TOWARDS A GRATIFYING ​INTERACTIVE MODALITY ​FOR SMART ENVIRONMENTS ​BASED ON UBIQUITOUS SENSING REFERENCES [1] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep learning. arXiv preprint arXiv:2106.11342, 2021. [2] Awni Hannun. Sequence modeling with ctc. Distill, 2017. doi: 10.23915/ distill.00008. https://distill.pub/2017/ctc. [3] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. Quartznet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6124–6128, Barcelona, Spain, May 2020. IEEE. ISBN 978-1-5090-6631-5. doi: 10/ghbz2x. URL https://ieeexplore.ieee.org/document/9053889/. [4] Mark Weiser. The Computer for the 21st Century. SCIENTIFIC AMERICAN, page 12, 1991. [5] Gordon E Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1):82–85, 1998. [6] Gregory D. Abowd. Beyond Weiser: From Ubiquitous to Collective Computing. Computer, 49(1):17–23, January 2016. ISSN 0018-9162. doi: 10/gf2khx. URL http://ieeexplore.ieee.org/document/7383147/. [7] Silvia Liberata Ullo and G. R. Sinha. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors, 20(11):3113, May 2020. ISSN 1424-8220. doi: 10/gmc67s. URL https://www.mdpi.com/1424-8220/ 20/11/3113. [8] Partha P Ray. Home health hub internet of things (h 3 iot): An architectural framework for monitoring health of elderly people. In 2014 International Conference on Science Engineering and Management Research (ICSEMR), pages 1–3. IEEE, 2014. [9] Partha Pratim Ray. A survey on internet of things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3):291–319, 2018. [10] Rob Dunne, Tim Morris, and Simon Harper. A Survey of Ambient Intelligence. ACM Computing Surveys, 54(4):1–27, July 2021. ISSN 0360- 0300, 1557-7341. doi: 10/gk55v5. URL https://dl.acm.org/doi/10.1145/ 3447242. [11] Naeem Iqbal, Shabir Ahmad, Do Hyeun Kim, et al. Health monitoring system for elderly patients using intelligent task mapping mechanism in closed loop healthcare environment. Symmetry, 13(2):357, 2021. [12] Xueyi Wang, Joshua Ellul, and George Azzopardi. Elderly fall detection systems: A literature survey. Frontiers in Robotics and AI, 7:71, 2020. [13] Man credits this apple watch feature for helping save his father. https://www.cbsnews.com/news/apple-watch-saves-life-hardfall-apple-watch-series-4-falling-emergency-bob-burdett/. [14] Apple watch calls 911 as middletown man falls down cliff. https: //newjersey.news12.com/apple-watch-calls-911-as-middletown-manfalls-down-cliff-41211528. [15] Smartwatch saved toralv (norwegian). https://www.nrk.no/norge/ smartklokken-reddet-toralv-lordag-natt-1.14412266. [16] Brad A. Myers. A brief history of human-computer interaction technology. Interactions, 5(2):44–54, March 1998. ISSN 1072-5520, 1558- 3449. doi: 10.1145/274430.274436. URL https://dl.acm.org/doi/10.1145/ 274430.274436. [17] Gregory D. Abowd. What next, ubicomp?: celebrating an intellectual disappearing act. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing - UbiComp ’12, page 31, Pittsburgh, Pennsylvania, 2012. ACM Press. ISBN 978-1-4503-1224-0. doi: 10/gj2qzj. URL http://dl.acm.org/ citation.cfm?doid=2370216.2370222. [18] Google Scholar Metrics. https://scholar.google.com/ citations?view_op=top_venues, . Accessed: 2021-08. [19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/ abs/1810.04805. arXiv: 1810.04805. [20] Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A Pretrained Language Model for Scientific Text. arXiv:1903.10676 [cs], September 2019. URL http://arxiv.org/abs/1903.10676. arXiv: 1903.10676. [21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. arXiv:1909.11942 [cs], February 2020. URL http://arxiv.org/abs/1909.11942. arXiv: 1909.11942. [22] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108 [cs], February 2020. URL http://arxiv.org/abs/ 1910.01108. arXiv: 1910.01108. [23] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised Pre-Training for Speech Recognition. In Interspeech 2019, pages 3465–3469. ISCA, September 2019. doi: 10/ ghpk8x. URL http://www.isca-speech.org/archive/Interspeech_2019/ abstracts/1873.html. [24] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: SelfSupervised Learning of Discrete Speech Representations. In Proceedings of the 8th International Conference on Learning Representations, April 2020. URL https://iclr.cc/virtual_2020/poster_rylwJxrYDS.html. [25] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations. In Advances in Neural Information Processing Systems, volume 33, pages 12449–12460, 2020. URL https://proceedings.neurips.cc/paper/ 2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html. [26] Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli. Unsupervised Cross-lingual Representation Learning for Speech Recognition. arXiv:2006.13979 [cs, eess], December 2020. URL http: //arxiv.org/abs/2006.13979. arXiv: 2006.13979. [27] Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitriadis, Kyu J. Han, Shinji Watanabe, and Shrikanth Narayanan. A Review of Speaker Diarization: Recent Advances with Deep Learning. arXiv:2101.09624 [cs, eess], January 2021. URL http://arxiv.org/abs/2101.09624. arXiv: 2101.09624. [28] Xian Shi, Fan Yu, Yizhou Lu, Yuhao Liang, Qiangze Feng, Daliang Wang, Yanmin Qian, and Lei Xie. The accented english speech recognition challenge 2020: open datasets, tracks, baselines, results and methods. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6918–6922. IEEE, 2021. [29] Siyuan Feng, Olya Kudina, Bence Mark Halpern, and Odette Scharenborg. Quantifying bias in automatic speech recognition. arXiv preprint arXiv:2103.15122, 2021. [30] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. Alexa, are you listening? privacy perceptions, concerns and privacy-seeking behaviors with smart speakers. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1–31, 2018. [31] Yue Huang, Borke Obada-Obieh, and Konstantin Beznosov. Amazon vs. my brother: How users of shared smart speakers perceive and cope with privacy risks. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2020. [32] Yongsen Ma, Gang Zhou, and Shuangquan Wang. WiFi Sensing with Channel State Information: A Survey. ACM Computing Surveys, 52(3): 1–36, July 2019. ISSN 0360-0300, 1557-7341. doi: 10.1145/3310194. URL https://dl.acm.org/doi/10.1145/3310194. [33] Siamak Yousefi, Hirokazu Narui, Sankalp Dayal, Stefano Ermon, and Shahrokh Valaee. A Survey on Behavior Recognition Using WiFi Channel State Information. IEEE Communications Magazine, 55(10):98–104, October 2017. ISSN 0163-6804. doi: 10.1109/MCOM.2017.1700082. URL http://ieeexplore.ieee.org/document/8067693/. [34] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C. Miller. Smart Homes that Monitor Breathing and Heart Rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 837–846, Seoul Republic of Korea, April 2015. ACM. ISBN 978-1-4503-3145-6. doi: 10/ggsrdr. URL https://dl.acm.org/doi/10.1145/ 2702123.2702200. [35] Mingmin Zhao, Fadel Adib, and Dina Katabi. Emotion recognition using wireless signals. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pages 95–108, 2016. [36] Tuan-Duy H. Nguyen and Huu-Nghia H. Nguyen. Towards a robust wifi-based fall detection with adversarial data augmentation. In 2020 54th Annual Conference on Information Sciences and Systems (CISS), pages 1–6, 2020. doi: 10.1109/CISS48834.2020.1570617398. [37] E.O. Thorp. The invention of the first wearable computer. In Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215), pages 4–8, Pittsburgh, PA, USA, 1998. IEEE Comput. Soc. ISBN 978-0-8186-9074-7. doi: 10/ffqq8z. URL http:// ieeexplore.ieee.org/document/729523/. [38] Sheikh M. A. Iqbal, Imadeldin Mahgoub, E Du, Mary Ann Leavitt, and Waseem Asghar. Advances in healthcare wearable devices. npj Flexible Electronics, 5(1):9, December 2021. ISSN 2397-4621. doi: 10/gjtq2w. URL http://www.nature.com/articles/s41528-021-00107-x. [39] Mengjie Zhang, Rehan Saeed, Safwan Saeed, Stevan Stankovski, and Xiaoshuan Zhang. Wearable Technology and Applications: A Systematic Review. page 13. [40] Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Justyna Skibi´nska, Salwa Saafi, Pavel Pascacio, Laura Flueratoru, Darwin Quezada Gaibor, Nadezhda Chukhno, Olga Chukhno, Asad Ali, Asma Channa, Ekaterina Svertoka, 93 Waleed Bin Qaim, Raúl Casanova-Marqués, Sylvia Holcer, Joaquín TorresSospedra, Sven Casteleyn, Giuseppe Ruggeri, Giuseppe Araniti, Radim Burget, Jiri Hosek, and Elena Simona Lohan. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Computer Networks, 193:108074, July 2021. ISSN 13891286. doi: 10/gjptzc. URL https://linkinghub.elsevier.com/retrieve/pii/S1389128621001651. [41] Eduardo Teixeira, Hélder Fonseca, Florêncio Diniz-Sousa, Lucas Veras, Giorjines Boppre, José Oliveira, Diogo Pinto, Alberto Jorge Alves, Ana Barbosa, Romeu Mendes, and Inês Marques-Aleixo. Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics, 6(2):38, April 2021. ISSN 2308-3417. doi: 10/gmcqhw. URL https://www.mdpi.com/2308-3417/6/2/38. [42] James D. Brandt, Harvey B. DuBiner, Robert Benza, Kenneth N. Sall, Gary A. Walker, Charles P. Semba, Donald Budenz, Douglas Day, Brian Flowers, Steven Lee, Quang Nguyen, and David Wirta. Long-term Safety and Efficacy of a Sustained-Release Bimatoprost Ocular Ring. Ophthalmology, 124(10):1565–1566, October 2017. ISSN 01616420. doi: 10.1016/j.ophtha.2017.04.022. URL https://linkinghub.elsevier.com/ retrieve/pii/S0161642017303883. [43] Jong Wook Kim, Jong Hyun Lim, Su Mee Moon, and Beakcheol Jang. Collecting Health Lifelog Data From Smartwatch Users in a Privacy-Preserving Manner. IEEE Transactions on Consumer Electronics, 65(3):369–378, August 2019. ISSN 0098-3063, 1558-4127. doi: 10.1109/TCE.2019.2924466. URL https://ieeexplore.ieee.org/document/8744248/. [44] Shiqiang Liu, Junchang Zhang, Yuzhong Zhang, and Rong Zhu. A wearable motion capture device able to detect dynamic motion of human limbs. Nature Communications, 11(1):5615, December 2020. ISSN 2041-1723. doi: 10/ gmcqhv. URL http://www.nature.com/articles/s41467-020-19424-2. [45] Matt Bower and Daniel Sturman. What are the educational affordances of wearable technologies? Computers & Education, 88:343–353, October 2015. ISSN 03601315. doi: 10/f7wnxw. URL https://linkinghub.elsevier.com/ retrieve/pii/S036013151530018X. [46] Shubham Garg and Pradumn Joshi. Integrated Wearable Police Module for Fine Management and Law Enforcement. In 2014 Texas Instruments India Educators’ Conference (TIIEC), pages 138–143, Bangalore, India, 2014. IEEE. ISBN 978-1-4673-8922-8. doi: 10.1109/TIIEC.2014.031. URL http: //ieeexplore.ieee.org/document/7899224/. [47] Haruka Murakami, Ryoko Kawakami, Satoshi Nakae, Yosuke Yamada, Yoshio Nakata, Kazunori Ohkawara, Hiroyuki Sasai, Kazuko IshikawaTakata, Shigeho Tanaka, and Motohiko Miyachi. Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method: Validation study. JMIR Mhealth Uhealth, 7(8):e13938, Aug 2019. ISSN 2291-5222. doi: 10.2196/13938. URL https://mhealth.jmir.org/2019/8/e13938/. [48] Kashif Saleem, Basit Shahzad, Mehmet A. Orgun, Jalal Al-Muhtadi, Joel J. P. C. Rodrigues, and Mohammed Zakariah. Design and deployment challenges in immersive and wearable technologies. Behaviour & Information Technology, 36(7):687–698, July 2017. ISSN 0144-929X, 1362- 3001. doi: 10/gmcwk2. URL https://www.tandfonline.com/doi/full/ 10.1080/0144929X.2016.1275808. [49] Neamah Al-Naffakh, Nathan Clarke, and Fudong Li. Continuous User Authentication Using Smartwatch Motion Sensor Data. In Nurit Gal-Oz and Peter R. Lewis, editors, Trust Management XII, volume 528, pages 15–28. Springer International Publishing, Cham, 2018. ISBN 978-3-319- 95275-8 978-3-319-95276-5. doi: 10.1007/978-3-319-95276-5_2. URL http: //link.springer.com/10.1007/978-3-319-95276-5_2. Series Title: IFIP Advances in Information and Communication Technology. [50] Krzysztof Pietroszek, Liudmila Tahai, James R. Wallace, and Edward Lank. Watchcasting: Freehand 3D interaction with off-the-shelf smartwatch. In 2017 IEEE Symposium on 3D User Interfaces (3DUI), pages 172–175, Los Angeles, CA, USA, 2017. IEEE. ISBN 978-1-5090-6716-9. doi: 10/gjbz54. URL http://ieeexplore.ieee.org/document/7893335/. [51] Saisakul Chernbumroong, Anthony S Atkins, and Hongnian Yu. Activity classification using a single wrist-worn accelerometer. In 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA) Proceedings, pages 1–6. IEEE, 2011. [52] Philipp M Scholl and Kristof Van Laerhoven. A feasibility study of wrist-worn accelerometer based detection of smoking habits. In 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 886–891. IEEE, 2012. [53] Fernando Ginez Da Silva and Elisabete Galeazzo. Accelerometer based intelligent system for human movement recognition. In 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, pages 20–24. IEEE, 2013. [54] Farzin Dadashi, Arash Arami, Florent Crettenand, Gregoire P Millet, John Komar, Ludovic Seifert, and Kamiar Aminian. A hidden markov model of the breaststroke swimming temporal phases using wearable inertial measurement units. In 2013 IEEE international conference on body sensor networks, pages 1–6. Ieee, 2013. [55] Muhammad Shoaib, Stephan Bosch, Hans Scholten, Paul JM Havinga, and Ozlem Durmaz Incel. Towards detection of bad habits by fusing smartphone and smartwatch sensors. In 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pages 591–596. IEEE, 2015. [56] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Motion ***** through smartwatch sensors. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 155– 166, 2015. [57] Serkan Balli, Ensar Arif Sa˘gbas, and T Hokimoto. The usage of statistical learning methods on wearable devices and a case study: activity recognition on smartwatches. Advances in statistical methodologies and their application to real problems, pages 259–277, 2017. [58] Gary M. Weiss, Jessica L. Timko, Catherine M. Gallagher, Kenichi Yoneda, and Andrew J. Schreiber. Smartwatch-based activity recognition: A machine learning approach. In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pages 426–429, Las Vegas, NV, USA, February 2016. IEEE. ISBN 978-1-5090-2455-1. doi: 10/gmcqh3. URL http://ieeexplore.ieee.org/document/7455925/. [59] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pages 127–140, Seoul South Korea, November 2015. ACM. ISBN 978-1-4503-3631-4. doi: 10/bcgb. URL https://dl.acm.org/doi/10.1145/2809695.2809718. [60] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing De-tailed Human Context in the Wild from Smartphones and Smartwatches. IEEE Pervasive Computing, 16(4):62–74, October 2017. ISSN 1536-1268. doi: 10/gk7smc. URL http://ieeexplore.ieee.org/document/8090454/. [61] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel. ExtraSensory App: Data Collection In-the-Wild with Rich User Interface to Self-Report Behavior. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12, Montreal QC Canada, April 2018. ACM. ISBN 978-1-4503-5620-6. doi: 10/ghnn6s. URL https: //dl.acm.org/doi/10.1145/3173574.3174128. [62] Yonatan Vaizman. Behavioral Context Recognition In the Wild. PhD thesis, UC San Diego, 2018. [63] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. In Proceedings of the 26th International Conference on World Wide Web, pages 351–360, Perth Australia, April 2017. International World Wide Web Conferences Steering Committee. ISBN 978- 1-4503-4913-0. doi: 10/gfx3gp. URL https://dl.acm.org/doi/10.1145/ 3038912.3052577. [64] Serkan Balli, Ensar Arif Sa˘gba¸s, and Musa Peker. Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm. Measurement and Control, 52 (1-2):37–45, January 2019. ISSN 0020-2940. doi: 10/ggft3r. URL http: //journals.sagepub.com/doi/10.1177/0020294018813692. 98 [65] Samaher Al-Janabi and Ali Hamza Salman. Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications. Big Data Mining and Analytics, 4 (2):124–138, June 2021. ISSN 2096-0654. doi: 10/gmd9t6. URL https: //ieeexplore.ieee.org/document/9343922/. [66] Florenc Demrozi, Cristian Turetta, and Graziano Pravadelli. B-HAR: an open-source baseline framework for in depth study of human activity recognition datasets and workflows. arXiv:2101.10870 [cs, eess], January 2021. URL http://arxiv.org/abs/2101.10870. arXiv: 2101.10870. [67] Yujiao Hao, Rong Zheng, and Boyu Wang. Invariant Feature Learning for Sensor-based Human Activity Recognition. IEEE Transactions on Mobile Computing, pages 1–1, 2021. ISSN 1536-1233, 1558-0660, 2161-9875. doi: 10/gmhhrz. URL https://ieeexplore.ieee.org/document/9372813/. [68] Satya P. Singh, Madan Kumar Sharma, Aime Lay-Ekuakille, Deepak Gangwar, and Sukrit Gupta. Deep ConvLSTM With Self-Attention for Human Activity Decoding Using Wearable Sensors. IEEE Sensors Journal, 21(6):8575– 8582, March 2021. ISSN 1530-437X, 1558-1748, 2379-9153. doi: 10/gjgc7w. URL https://ieeexplore.ieee.org/document/9296308/. [69] Ghanapriya Singh, Mahesh Chowdhary, Arun Kumar, and Rajendar Bahl. A Personalized Classifier for Human Motion Activities With Semi-Supervised Learning. IEEE Transactions on Consumer Electronics, 66(4):346–355, November 2020. ISSN 0098-3063, 1558-4127. doi: 10/gmfcnn. URL https: //ieeexplore.ieee.org/document/9249433/. [70] Sakorn Mekruksavanich and Anuchit Jitpattanakul. Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data. Electronics, 10(14):1685, July 2021. ISSN 2079-9292. doi: 10/gmd9fg. URL https://www.mdpi.com/2079-9292/10/ 14/1685. [71] Bolu Oluwalade, Sunil Neela, Judy Wawira, Tobiloba Adejumo, and Saptarshi Purkayastha. Human activity recognition using deep learning models on smartphones and smartwatches sensor data. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - HEALTHINF,, pages 645–650. INSTICC, SciTePress, 2021. ISBN 978-989-758-490-9. doi: 10.5220/0010325906450650. [72] Gierad Laput, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris Harrison. EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pages 157–166, Charlotte NC USA, November 2015. ACM. ISBN 978-1-4503-3779-3. doi: 10/gmc67p. URL https://dl.acm.org/doi/10.1145/2807442.2807481. [73] Gierad Laput, Robert Xiao, and Chris Harrison. ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 321–333, Tokyo Japan, October 2016. ACM. ISBN 978- 1-4503-4189-9. doi: 10/gk75f5. URL https://dl.acm.org/doi/10.1145/ 2984511.2984582. [74] Gierad Laput and Chris Harrison. Sensing Fine-Grained Hand Activity with Smartwatches. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–13, Glasgow Scotland Uk, May 2019. ACM. ISBN 978-1-4503-5970-2. doi: 10/ggft3w. URL https://dl.acm.org/ doi/10.1145/3290605.3300568. [75] Liang-Hong Wu, Liang-Chuan Wu, and Shou-Chi Chang. Exploring consumers’ intention to accept smartwatch. Computers in Human Behavior, 64:383–392, November 2016. ISSN 07475632. doi: 10.1016/ j.chb.2016.07.005. URL https://linkinghub.elsevier.com/retrieve/ pii/S0747563216304940. [76] Sensor stack. https://source.android.com/devices/sensors/sensorstack. Accessed: 2021-04-01. [77] kernel-msm - Motorola Android Linux Kernel source repository. https: //github.com/MotorolaMobilityLLC/kernel-msm. Accessed: 2021-03-25. [78] Ziwei Zhu. Real-time gesture recognition demo with Android Wear device (moto360) [Software]. https://github.com/Zziwei/ AndroidWear_Gesture_Recognition. Accessed: 2021-05-20. [79] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access, 7:133190–133202, 2019. ISSN 2169-3536. doi: 10/gmd86p. URL https: //ieeexplore.ieee.org/document/8835065/. [80] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. Context Recognition In-the-Wild: Unified Model for Multi-Modal Sensors and Multi-Label Classification. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4):1–22, January 2018. ISSN 2474-9567. doi: 10/gmhnw8. URL https://dl.acm.org/doi/10.1145/3161192. [81] Zhendong Zhuang and Yang Xue. Sport-Related Human Activity Detection and Recognition Using a Smartwatch. Sensors, 19(22):5001, November 2019. ISSN 1424-8220. doi: 10/ggdg4m. URL https://www.mdpi.com/1424-8220/ 19/22/5001. [82] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series. Mathematics of computation, 19(90):297–301, 1965. [83] Dennis Gabor. Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, (26):429–441, 1946. [84] Jonathan Allen. Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3):235–238, 1977. [85] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances in neural information processing systems, 2, 1989. [86] F. Mamalet and Christophe Garcia. Simplifying convnets for fast learning. In ICANN, 2012. [87] Francois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-1. doi: 10/gfxgtm. URL http:// ieeexplore.ieee.org/document/8099678/. [88] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https: //www.tensorflow.org/. Software available from tensorflow.org. [89] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorchan-imperative-style-high-performance-deep-learning-library.pdf. [90] Fran¸cois Chollet et al. Keras. https://keras.io, 2015. [91] Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert. Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions. In Interspeech 2019, pages 3785–3789. ISCA, September 2019. doi: 10/ gj9trd. URL http://www.isca-speech.org/archive/Interspeech_2019/ abstracts/2460.html. [92] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949. [93] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, et al. Nemo: a toolkit for building ai applications using neural modules. arXiv preprint arXiv:1909.09577, 2019. [94] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M. Cohen, Huyen Nguyen, and Ravi Teja Gadde. Jasper: An End-to-End Convolutional Neural Acoustic Model. In Interspeech 2019, pages 71–75. ISCA, September 2019. doi: 10/gj765j. URL http://www.iscaspeech.org/archive/Interspeech_2019/abstracts/1819.html. [95] Min-Cheol Kwon, Hanjong You, Jeongung Kim, and Sunwoong Choi. Classification of Various Daily Activities using Convolution Neural Network and Smartwatch. In 2018 IEEE International Conference on Big Data (Big Data), pages 4948–4951, Seattle, WA, USA, December 2018. IEEE. ISBN 978-1-5386-5035-6. doi: 10/gj2q6w. URL https://ieeexplore.ieee.org/ document/8621893/. [96] Kenichi Yoneda and Gary M. Weiss. Mobile sensor-based biometrics using common daily activities. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), pages 584– 590, New York, NY, October 2017. IEEE. ISBN 978-1-5386-1104-3. doi: 10/gmd86q. URL http://ieeexplore.ieee.org/document/8249001/. [97] Isibor Kennedy Ihianle, Augustine O. Nwajana, Solomon Henry Ebenuwa, Richard I. Otuka, Kayode Owa, and Mobolaji O. Orisatoki. A Deep Learning Approach for Human Activities Recognition From Multimodal Sensing Devices. IEEE Access, 8:179028–179038, 2020. ISSN 2169-3536. doi: 10/gmd86s. URL https://ieeexplore.ieee.org/document/9209961/. [98] Maria Cornacchia, Koray Ozcan, Yu Zheng, and Senem Velipasalar. A Survey on Activity Detection and Classification Using Wearable Sensors. IEEE Sensors Journal, 17(2):386–403, January 2017. ISSN 1530-437X, 1558-1748, 2379-9153. doi: 10/ggsp5b. URL http://ieeexplore.ieee.org/document/ 7742959/. [99] Md Atiqur Rahman Ahad, Anindya Das Antar, and Masud Ahmed. Sensor-Based Benchmark Datasets: Comparison and Analysis. In IoT Sensor-Based Activity Recognition, volume 173, pages 95–121. Springer International Publishing, Cham, 2021. ISBN 978-3-030-51378-8 978-3-030-51379-5. doi: 10.1007/978-3-030-51379-5_6. URL http://link.springer.com/10.1007/ 978-3-030-51379-5_6. Series Title: Intelligent Systems Reference Library. [100] Windows Interactive Logon Architecture. https://docs.microsoft.com/ en-us/previous-versions/windows/it-pro/windows-server-2008- R2-and-2008/ff404303(v=ws.10)?redirectedfrom=MSDN, . Accessed: 2021-07-25. [101] Windows Authentication Overview. https://docs.microsoft.com/ en-us/windows-server/security/windows-authentication/windowsauthentication-overview, . Accessed: 2021-07-25. [102] Albrecht Schmidt. Don’t blame the user: toward means for usable and practical authentication. Interactions, 26(3):73–75, April 2019. ISSN 1072- 5520, 1558-3449. doi: 10/gmg8bn. URL https://dl.acm.org/doi/10.1145/ 3320509. [103] Dan Griffin. Create Custom Login Experiences with Credential Providers for Windows Vista. https://docs.microsoft.com/en-us/archive/msdnmagazine/2007/january/custom-login-experiences-credentialproviders-in-windows-vista. Accessed: 2021-07-25. [104] Authentication Packages. https://docs.microsoft.com/en-us/ windows/win32/secauthn/authentication-packages. Accessed: 2021-07- 25. [105] Credentials Processes in Windows Authentication. https: //docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn751047(v= ws.11)?redirectedfrom=MSDN. Accessed: 2021-07-25. [106] Brian Ward. How Linux Works, 3rd Edition. No Starch Press, 2021. ISBN 978-1-71850-040-2. OCLC: 1242946803. [107] Vipin Samar. UNIFIED LOGIN WITH PLUGGABLE AUTHENTICATION MODULES (PAM). http://www.opengroup.org/rfc/rfc86.0.html. Accessed: 2021-07-25. [108] Vipin Samar. Unified Login with Pluggable Authentication Modules (PAM). In Proceedings of the 3rd ACM Conference on Computer and Communications Security, CCS ’96, page 1–10, New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897918290. doi: 10.1145/ 238168.238177. URL https://doi.org/10.1145/238168.238177. [109] Introduction to the PAM Framework. https://docs.oracle.com/cd/ E19120-01/open.solaris/819-2145/pam-01/index.html, . Accessed: 2021- 07-25. [110] Pluggable Authentication Modules (PAM). https://web.mit.edu/rheldoc/4/RH-DOCS/rhel-rg-en-4/ch-pam.html. Accessed: 2021-07-25. [111] Introduction to the PAM framework. https://docs.oracle.com/cd/ E19656-01/820-0386/aaqds/index.html, . Accessed: 2021-07-25. [112] ICredentialProvider interface (credentialprovider.h). https:// docs.microsoft.com/en-us/windows/win32/api/credentialprovider/ nn-credentialprovider-icredentialprovider, . Accessed: 2021-07-25. [113] ICredentialProviderCredential interface (credentialprovider.h). https:// docs.microsoft.com/en-us/windows/win32/api/credentialprovider/nn-credentialprovider-icredentialprovidercredential, . Accessed: 2021-07-25. [114] ICredentialProviderCredentialEvents2 interface (credentialprovider.h). https://docs.microsoft.com/en-us/windows/ win32/api/credentialprovider/nn-credentialprovidericredentialprovidercredentialevents2. Accessed: 2021-08-01. [115] Russell Stuart. pam_python - a PAM module runs Python interpreter [Software]. http://pam-python.sourceforge.net/doc/html/. Accessed: 2021-07-25. [116] Extensions. https://developer.chrome.com/docs/extensions/, . Accessed: 2021-07-25. [117] Node.js - a javascript runtime built on chrome’s v8 javascript engine. [Software]. https://nodejs.org/en/. Accessed: 2021-07-25. [118] Express - Fast, unopinionated, minimalist web framework for Node.js. [Software]. https://expressjs.com/. Accessed: 2021-07-25. [119] Mongoose - Elegant MongoDB object modeling for node.js. [Software]. https://mongoosejs.com/. Accessed: 2021-07-25. [120] CORS - a node.js package for providing a Connect/Express middleware. [Software]. https://github.com/expressjs/cors/, . Accessed: 2021- 07-25. [121] Cross-Origin Resource Sharing (cors). https://developer.mozilla.org/ en-US/docs/Web/HTTP/CORS/, . Accessed: 2021-07-25. [122] CryptoJS - JavaScript implementations of standard and secure cryptographic algorithms. [Software]. https://cryptojs.gitbook.io/docs/. Accessed: 2021-07-25. [123] jsonwebtoken - An implementation of JSON Web Tokens. [Software]. https://github.com/auth0/node-jsonwebtoken/. Accessed: 2021-07-25. [124] Mike Jones. JSON Web Token (JWT). https://datatracker.ietf.org/ doc/html/rfc7519/. Accessed: 2021-07-25. [125] systemd -a suite of basic building blocks for a Linux system [Software]. https://systemd.io/. Accessed: 2021-08-01. [126] NSSM - the Non-Sucking Service Manager [Software]. https://nssm.cc/. Accessed: 2021-8-01. [127] Tuan-Duy H Nguyen, Huu-Nghia H Nguyen, and Hieu Dao. Recognizing families through images with pretrained encoder. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pages 887–891. IEEE, 2020. doi: 10.1109/FG47880.2020.00130. [128] Thuc Nguyen-Quang, Tuan-Duy H Nguyen, Thang-Long Nguyen-Ho, AnhKiet Duong, Nhat Hoang-Xuan, Vinh-Thuyen Nguyen-Truong, Hai-Dang Nguyen, and Minh-Triet Tran. Hcmus at mediaeval 2020: Image-text fusion for automatic news-images re-matching. In MediaEval 2020: Multimedia Benchmark Workshop 2020, 2020. URL http://ceur-ws.org/Vol-2882/ paper73.pdf. [129] Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, Walter Rocchia, Yonghuai Liu, Ekpo Otu, Reyer Zwiggelaar, David Hunter, Evangelia I. Zacharaki, Eleftheria Psatha, Dimitrios Laskos, Gerasimos Arvanitis, Konstantinos Moustakas, Tunde Aderinwale, Charles Christoffer, WoongHee Shin, Daisuke Kihara, Andrea Giachetti, Huu-Nghia Nguyen, TuanDuy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai-Dang Nguyen, and Minh-Triet Tran. Shrec 2021: Retrieval and classification of protein surfaces equipped with physical and chemical properties. Computers Graphics, 99:1–21, 2021. ISSN 0097-8493. doi: https:// doi.org/10.1016/j.cag.2021.06.010. URL https://www.sciencedirect.com/ science/article/pii/S0097849321001254.