(* Simulator-Code für Photonen, geladene und neutrale Teilchen in Raindrop Doran *) (* Koordinaten, v Eingabe und Anzeige relativ zum ZAMO *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||| Mathematica | kerr.newman.yukterez.net | 06.08.2017 - 13.06.2020, Version 02 |||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) wp=MachinePrecision; set={"GlobalAdaptive", "MaxErrorIncreases"->100, Method->"GaussKronrodRule"}; mrec=100; mt1=Automatic; mt2={"EquationSimplification"-> "Residual"}; mt3={"ImplicitRungeKutta", "DifferenceOrder"-> 20}; mt4={"StiffnessSwitching", Method-> {"ExplicitRungeKutta", Automatic}}; mt5={"EventLocator", "Event"-> (r[τ]-1001/1000 rA)}; mta=mt1; (* mt1: Speed, mt3: Accuracy *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 1) STARTBEDINGUNGEN EINGEBEN |||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) A=a; (* pseudosphärisch [BL]: A=0, kartesisch [KS]: A=a *) tmax=300; (* Eigenzeit *) Tmax=300; (* Koordinatenzeit *) TMax=Min[Tmax, т[plunge-1/100]]; tMax=Min[tmax, plunge-1/100]; (* Integrationsende *) r0 = Sqrt[7^2-a^2]; (* Startradius *) r1 = r0+2; (* Endradius wenn v0=vr0=vr1 *) θ0 = π/2; (* Breitengrad *) φ0 = 0; (* Längengrad *) a = 9/10; (* Spinparameter *) ℧ = 2/5; (* spezifische Ladung des schwarzen Lochs *) q = 0; (* spezifische Ladung des Testkörpers *) v0 = 2/5; (* Anfangsgeschwindigkeit *) α0 = 0; (* vertikaler Abschusswinkel *) i0 = ArcTan[5/6]; (* Bahninklinationswinkel *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 2) GESCHWINDIGKEITS-, ENERGIE UND DREHIMPULSKOMPONENTEN ||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) vr0=v0 Sin[α0]; (* radiale Geschwindigkeitskomponente *) vθ0=v0 Cos[α0] Sin[i0]; (* longitudinale Geschwindigkeitskomponente *) vφ0=v0 Cos[α0] Cos[i0]; (* latitudinale Geschwindigkeitskomponente *) dt[τ_]:=ю[τ]+If[R[τ]<1+Sqrt[1-a^2 Cos[Θ[τ]]^2-℧^2] && R[τ]>1-Sqrt[1-a^2 Cos[Θ[τ]]^2-℧^2], -1, +1] R'[τ] (-Sqrt[(2R[τ]-℧^2)/(a^2+R[τ]^2)])/(1- ((2R[τ]-℧^2)/(a^2+R[τ]^2))); v[τ_]:=If[μ==0, 1, (Sqrt[Δi[τ] Σi[τ]^3 Χi[τ]-ε^2 Σi[τ]^2 Χi[τ]^2-2 a Lz ε Σi[τ]^2 Χi[τ] ℧^2- a^2 Lz^2 Σi[τ]^2 ℧^4+4 a Lz ε Σi[τ]^2 Χi[τ] R[τ]+2 q ε Σi[τ] Χi[τ]^2 ℧ R[τ]+ 4 a^2 Lz^2 Σi[τ]^2 ℧^2 R[τ]+2 a Lz q Σi[τ] Χi[τ] ℧^3 R[τ]-4 a^2 Lz^2 Σi[τ]^2 R[τ]^2- 4 a Lz q Σi[τ] Χi[τ] ℧ R[τ]^2-q^2 Χi[τ]^2 ℧^2 R[τ]^2])/(ε Σi[τ] Χi[τ]+ a Lz Σi[τ] ℧^2-2 a Lz Σi[τ] R[τ]-q Χi[τ] ℧ R[τ])]/I; vrj[τ_]:=R'[τ]/Sqrt[Δi[τ]] Sqrt[Σi[τ] (1+μ v[τ]^2)]; vθj[τ_]:=Θ'[τ] Sqrt[Σi[τ] (1+μ v[τ]^2)]; vφj[τ_]:=Evaluate[(-(((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+℧^2-2 r[τ]+r[τ]^2) Sin[θ[τ]] Sqrt[1- μ^2 v[τ]^2] (-(φ'[τ]+If[r[τ]<1+Sqrt[1-a^2 Cos[θ[τ]]^2-℧^2] && r[τ]>1-Sqrt[1- a^2 Cos[θ[τ]]^2-℧^2], -1, +1] r'[τ] a (-Sqrt[(2r[τ]-℧^2)/(a^2+r[τ]^2)])/(1- ((2r[τ]-℧^2)/(a^2+r[τ]^2)))/(a^2+r[τ]^2))-(a q ℧ r[τ])/((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+ ℧^2-2 r[τ]+r[τ]^2))+(ε Csc[θ[τ]]^2 (a (-a^2-℧^2+2 r[τ]-r[τ]^2) Sin[θ[τ]]^2+a (a^2+ r[τ]^2) Sin[θ[τ]]^2))/((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+℧^2-2 r[τ]+r[τ]^2))+(a q ℧ r[τ] (a^2+ ℧^2-2 r[τ]+r[τ]^2-a^2 Sin[θ[τ]]^2))/((a^2 Cos[θ[τ]]^2+r[τ]^2)^2 (a^2+℧^2-2 r[τ]+ r[τ]^2) (1-μ^2 v[τ]^2))))/((a^2+℧^2-2 r[τ]+r[τ]^2-a^2 Sin[θ[τ]]^2) Sqrt[((a^2+r[τ]^2)^2- a^2 (a^2+℧^2-2 r[τ]+r[τ]^2) Sin[θ[τ]]^2)/(a^2 Cos[θ[τ]]^2+r[τ]^2)]))) /. sol][[1]] vtj[τ_]:=Sqrt[vrj[τ]^2+vθj[τ]^2+vφj[τ]^2]; vr[τ_]:=vrj[τ]/vtj[τ]*v[τ]; vθ[τ_]:=vθj[τ]/vtj[τ]*v[τ]; vφ[τ_]:=vφj[τ]/vtj[τ]*v[τ]; x0[A_]:=Sqrt[r0^2+A^2] Sin[θ0] Cos[φ0]; (* Anfangskoordinaten *) y0[A_]:=Sqrt[r0^2+A^2] Sin[θ0] Sin[φ0]; z0[A_]:=r0 Cos[θ0]; ε0=Sqrt[δ Ξ/χ]/j[v0]+Lz ω0; ε=ε0+((q r0 ℧)/(r0^2+a^2 Cos[θ0]^2)); εζ:=Sqrt[Δ Σ/Χ]/j[ν]+Lz ωζ+((q r[τ] ℧)/(r[τ]^2+a^2 Cos[θ[τ]]^2)); LZ=vφ0 Ы/j[v0]; Lz=LZ+((q a r0 ℧ Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)) j[v0]^2; Lζ:=vφ0 я/j[ν]+0((q a r[τ] ℧ Sin[θ[τ]]^2)/(r[τ]^2+a^2 Cos[θ[τ]]^2)); pθ0=vθ0 Sqrt[Ξ]/j[v0]; pθζ:=θ'[τ] Σ; pr0=vr0 Sqrt[(Ξ/δ)/j[v0]^2]; Qk=Limit[pθ0^2+(Lz^2 Csc[θ1]^2-a^2 (ε^2+μ)) Cos[θ1]^2, θ1->θ0]; (* Carter Konstante *) Q=Limit[pθ0^2+(Lz^2 Csc[θ1]^2-a^2 (ε^2+μ)) Cos[θ1]^2, θ1->θ0]; Qζ:=pθζ^2+(Lz^2 Csc[θ[τ]]^2-a^2 (εζ^2+μ)) Cos[θ[τ]]^2; k=Q+Lz^2+a^2 (ε^2+μ); kζ:=Qζ+Lz^2+a^2 (εζ^2+μ); (* ISCO *) isco = rISCO/.Solve[0 == rISCO (6 rISCO-rISCO^2-9 ℧^2+3 a^2)+4 ℧^2 (℧^2-a^2)- 8 a (rISCO-℧^2)^(3/2) && rISCO>=rA, rISCO][[1]]; μ=If[Abs[v0]==1, 0, If[Abs[v0]<1, -1, 1]]; (* Baryon: μ=-1, Photon: μ=0 *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 3) FLUCHTGESCHWINDIGKEIT UND BENÖTIGTER ABSCHUSSWINKEL |||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) vEsc=If[q==0, ж0, Abs[(\[Sqrt](r0^2 (r0^2 (δ Ξ-χ)+2 q r0 χ ℧-q^2 χ ℧^2)+ 2 a^2 r0 (r0 δ Ξ-r0 χ+q χ ℧) Cos[θ0]^2+a^4 (δ Ξ- χ) Cos[θ0]^4))/(Sqrt[χ] (r0 (r0-q ℧)+a^2 Cos[θ0]^2))]]; (* horizontaler Photonenkreiswinkel, i0 *) iP[r0_, a_]:=Normal[iPh/.NSolve[1/(8 (r0^2+a^2 Cos[θ0]^2)^3) (a^2+(-2+r0) r0+ ℧^2) (8 r0 (r0^2+a^2 Cos[θ0]^2) Sin[iPh]^2+1/((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2)) 8 a (Cos[iPh] Sin[θ0] (a^2-2 r0+r0^2+℧^2-a^2 Sin[θ0]^2) Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+(a (a^2+r0^2) Sin[θ0]^2+ a (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^2) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2))) (-(1/((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2)))2 a^2 Cot[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+ r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2- ℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2)))+1/((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2)) 2 r0 (r0- ℧^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2- 2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+ (a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))))+1/((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2)) 8 Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2- 2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+ (a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))) (1/((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2)) a^2 Cot[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+ a (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2- ℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2- a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)))+1/((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2)) r0 (-r0+ ℧^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+ ((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0- ℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))))+1/((a^2-2 r0+r0^2+ ℧^2)^2 (r0^2+a^2 Cos[θ0]^2)^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (a^2-2 r0+r0^2+℧^2- a^2 Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+ (a (a^2+r0^2) Sin[θ0]^2+a (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^2) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0- ℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)))^2 (r0 (a^2 (3 a^2+ 4 ℧^2+4 (a-℧) (a+℧) Cos[2 θ0]+a^2 Cos[4 θ0])+8 r0 (r0^3+2 a^2 r0 Cos[θ0]^2- a^2 Sin[θ0]^2))+2 a^4 Sin[2 θ0]^2))==0,iPh,Reals]][[1]]/.C[1]->0 (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 4) HORIZONTE UND ERGOSPHÄREN RADIEN ||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) rE=1+Sqrt[1-a^2 Cos[θ]^2-℧^2]; (* äußere Ergosphäre *) RE[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rE^2+A^2] Sin[θ] Cos[φ], Sqrt[rE^2+A^2] Sin[θ] Sin[φ], rE Cos[θ]}, w1], w2]; rG=1-Sqrt[1-a^2 Cos[θ]^2-℧^2]; (* innere Ergosphäre *) RG[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rG^2+A^2] Sin[θ] Cos[φ], Sqrt[rG^2+A^2] Sin[θ] Sin[φ], rG Cos[θ]}, w1], w2]; rA=1+Sqrt[1-a^2-℧^2]; (* äußerer Horizont *) RA[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rA^2+A^2] Sin[θ] Cos[φ], Sqrt[rA^2+A^2] Sin[θ] Sin[φ], rA Cos[θ]}, w1], w2]; rI=1-Sqrt[1-a^2-℧^2]; (* innerer Horizont *) RI[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rI^2+A^2] Sin[θ] Cos[φ], Sqrt[rI^2+A^2] Sin[θ] Sin[φ], rI Cos[θ]}, w1], w2]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 5) HORIZONTE UND ERGOSPHÄREN PLOT ||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) horizons[A_, mesh_, w1_, w2_]:=Show[ ParametricPlot3D[RE[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> mesh, PlotPoints -> plp, PlotStyle -> Directive[Blue, Opacity[0.10]]], ParametricPlot3D[RA[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Cyan, Opacity[0.15]]], ParametricPlot3D[RI[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Red, Opacity[0.25]]], ParametricPlot3D[RG[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Red, Opacity[0.35]]]]; BLKS:=Grid[{{horizons[a, 35, 0, 0], horizons[0, 35, 0, 0]}}]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 6) FUNKTIONEN ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) j[v_]:=Sqrt[1-μ^2 v^2]; (* Lorentzfaktor *) mirr=Sqrt[2-℧^2+2 Sqrt[1-a^2-℧^2]]/2; (* irreduzible Masse *) я=Sqrt[Χ/Σ]Sin[θ[τ]]; (* axialer Umfangsradius *) яi[τ_]:=Sqrt[Χi[τ]/Σi[τ]]Sin[Θ[τ]]; Ы=Sqrt[χ/Ξ]Sin[θ0]; Σ=r[τ]^2+a^2 Cos[θ[τ]]^2; (* poloidialer Umfangsradius *) Σi[τ_]:=R[τ]^2+a^2 Cos[Θ[τ]]^2; Ξ=r0^2+a^2 Cos[θ0]^2; Δ=r[τ]^2-2r[τ]+a^2+℧^2; Δr[r_]:=r^2-2r+a^2+℧^2; Δi[τ_]:=R[τ]^2-2R[τ]+a^2+℧^2; δ=r0^2-2r0+a^2+℧^2; Χ=(r[τ]^2+a^2)^2-a^2 Sin[θ[τ]]^2 Δ; Χi[τ_]:=(R[τ]^2+a^2)^2-a^2 Sin[Θ[τ]]^2 Δi[τ]; χ=(r0^2+a^2)^2-a^2 Sin[θ0]^2 δ; Xj=a Sin[θ0]^2; xJ[τ_]:=a Sin[Θ[τ]]^2; XJ=a Sin[θ[τ]]^2; т[τ_]:=Evaluate[t[τ]/.sol][[1]]; (* Koordinatenzeit nach Eigenzeit *) д[ξ_]:=Quiet[zt /.FindRoot[т[zt]-ξ, {zt, 0}]]; (* Eigenzeit nach Koordinatenzeit *) T :=Quiet[д[tk]]; pΘ[τ_]:=Evaluate[Ξ θ'[τ] /. sol][[1]]; pR[τ_]:=Evaluate[r'[τ] Ξ/δ /. sol][[1]]; ю[τ_]:=Evaluate[t'[τ]/.sol][[1]]; γ[τ_]:=If[μ==0, "Infinity", ю[τ]]; (* totale ZD *) R[τ_]:=Evaluate[r[τ]/.sol][[1]]; (* Boyer-Lindquist Radius *) Φ[τ_]:=Evaluate[φ[τ]/.sol][[1]]; Θ[τ_]:=Evaluate[θ[τ]/.sol][[1]]; ß[τ_]:=Sqrt[X'[τ]^2+Y'[τ]^2+Z'[τ]^2 ]/ю[τ]; ς[τ_]:=Sqrt[Χi[τ]/Δi[τ]/Σi[τ]]; ς0=Sqrt[χ/δ/Ξ]; (* gravitative ZD *) ω[τ_]:=(a(2R[τ]-℧^2))/Χi[τ]; ω0=(a(2r0-℧^2))/χ; ωζ=(a(2r[τ]-℧^2))/Χ; (* F-Drag Winkelg *) Ω[τ_]:=ω[τ] Sqrt[X[τ]^2+Y[τ]^2]; (* Frame Dragging beobachtete Geschwindigkeit *) й[τ_]:=ω[τ] яi[τ] ς[τ]; й0=ω0 Ы ς0; (* Frame Dragging lokale Geschwindigkeit *) dst[τ_]:=Quiet@NIntegrate[If[μ==0, 1, v[tau]/Abs[Sqrt[1-v[tau]^2]]], {tau, 0, τ}]; tcr[τ_]:=Quiet@NIntegrate[dt[tau], {tau, 0, τ}, Method->set, MaxRecursion->mrec]; ж[τ_]:=Sqrt[ς[τ]^2-1]/ς[τ]; ж0=Sqrt[ς0^2-1]/ς0; (* Fluchtgeschwindigkeit *) epot[τ_]:=ε+μ-ekin[τ]; (* potentielle Energie *) ekin[τ_]:=If[μ==0, ς[τ], 1/Sqrt[1-v[τ]^2]-1]; (* kinetische Energie *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 7) DIFFERENTIALGLEICHUNG |||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) dp= Style[\!\(\*SuperscriptBox[\(Y\),\(Y\)]\), White]; n0[z_] := Chop[Re[N[Simplify[z]]]]; dr0 = (pr0 δ)/Ξ; dθ0 = pθ0/Ξ; dφ0 = 1/(δ Ξ Sin[θ0]^2) (ε (-δ Xj+a Sin[θ0]^2 (r0^2+a^2))+Lz (δ-a^2 Sin[θ0]^2)- q ℧ r0 a Sin[θ0]^2)-If[r0<1+Sqrt[1-a^2 Cos[θ0]^2-℧^2] && r0>1-Sqrt[1-a^2 Cos[θ0]^2-℧^2], -1, +1] (pr0 δ)/Ξ a (-Sqrt[(2 r0-℧^2)/(a^2+r0^2)])/(1-(Sqrt[(2 r0-℧^2)/(a^2+ r0^2)])^2)/(a^2+r0^2); dt0 = Min[ Max[0, N[-(1/(2 (-1+(-2 ℧^2+4 r0)/(a^2+a^2 Cos[2 θ0]+2 r0^2))))((2 Sqrt[-℧^2+2 r0] dr0)/Sqrt[a^2+ r0^2]-(2 a (-℧^2+2 r0) Sin[θ0]^2 dφ0)/(a^2 Cos[θ0]^2+r0^2)+\[Sqrt](((2 Sqrt[-℧^2+ 2 r0] dr0)/Sqrt[a^2+r0^2]+(2 a (℧^2-2 r0) Sin[θ0]^2 dφ0)/(a^2 Cos[θ0]^2+r0^2))^2- 4 (-1+(-2 ℧^2+4 r0)/(a^2+a^2 Cos[2 θ0]+2 r0^2)) (-μ+((a^2+a^2 Cos[2 θ0]+ 2 r0^2) dr0^2)/(2 (a^2+r0^2))+(a^2 Cos[θ0]^2+r0^2) dθ0^2-(2 a Sqrt[-℧^2+ 2 r0] Sin[θ0]^2 dr0 dφ0)/Sqrt[a^2+r0^2]+(Sin[θ0]^2 ((a^2+r0^2)^2-a^2 (a^2+℧^2- 2 r0+r0^2) Sin[θ0]^2) dφ0^2)/(a^2 Cos[θ0]^2+r0^2))))]], Max[0, N[1/(2 (-1+(-2 ℧^2+4 r0)/(a^2+a^2 Cos[2 θ0]+2 r0^2))) (-((2 Sqrt[-℧^2+2 r0]dr0)/Sqrt[a^2+ r0^2])+(2 a (-℧^2+2 r0) Sin[θ0]^2 dφ0)/(a^2 Cos[θ0]^2+r0^2)+\[Sqrt](((2 Sqrt[-℧^2+ 2 r0]dr0)/Sqrt[a^2+r0^2]+(2 a (℧^2-2 r0) Sin[θ0]^2 dφ0)/(a^2 Cos[θ0]^2+r0^2))^2-4 (-1+ (-2 ℧^2+4 r0)/(a^2+a^2 Cos[2 θ0]+2 r0^2)) (-μ+((a^2+a^2 Cos[2 θ0]+2 r0^2)dr0^2)/(2 (a^2+ r0^2))+(a^2 Cos[θ0]^2+r0^2) dθ0^2-(2 a Sqrt[-℧^2+2 r0] Sin[θ0]^2 dr0 dφ0)/Sqrt[a^2+ r0^2]+(Sin[θ0]^2 ((a^2+r0^2)^2-a^2 (a^2+℧^2-2 r0+ r0^2) Sin[θ0]^2) dφ0^2)/(a^2 Cos[θ0]^2+r0^2))))]]]; DGL={ t''[τ]==1/(8 (a^2 Cos[θ[τ]]^2+r[τ]^2)^3) (8 q ℧ (-a^4 Cos[θ[τ]]^4+r[τ]^4) r'[τ]+ (8 (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 r'[τ]^2)/(Sqrt[-℧^2+ 2 r[τ]] Sqrt[a^2+r[τ]^2])+8 q ℧ Sqrt[-℧^2+2 r[τ]] Sqrt[a^2+r[τ]^2] (-a^2 Cos[θ[τ]]^2+ r[τ]^2) t'[τ]+16 (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) (a^2 Cos[θ[τ]]^2+r[τ]^2) r'[τ] t'[τ]+ 8 Sqrt[-℧^2+2 r[τ]] (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) Sqrt[a^2+r[τ]^2] t'[τ]^2- 8 a^2 q ℧ r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[2 θ[τ]] θ'[τ]+(8 a^2 Sqrt[-℧^2+ 2 r[τ]] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 Sin[2 θ[τ]] r'[τ] θ'[τ])/Sqrt[a^2+r[τ]^2]-8 a^2 (℧^2- 2 r[τ]) (a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[2 θ[τ]] t'[τ] θ'[τ]+8 r[τ] Sqrt[-℧^2+ 2 r[τ]] Sqrt[a^2+r[τ]^2] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 θ'[τ]^2-8 a q ℧ Sqrt[-℧^2+ 2 r[τ]] Sqrt[a^2+r[τ]^2] (-a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[θ[τ]]^2 φ'[τ]- 16 a (a^2 Cos[θ[τ]]^2+(℧^2-r[τ]) r[τ]) (a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[θ[τ]]^2 r'[τ] φ'[τ]- 16 a Sqrt[-℧^2+2 r[τ]] (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) Sqrt[a^2+ r[τ]^2] Sin[θ[τ]]^2 t'[τ] φ'[τ]+16 a^3 Cos[θ[τ]] (℧^2-2 r[τ]) (a^2 Cos[θ[τ]]^2+ r[τ]^2) Sin[θ[τ]]^3 θ'[τ] φ'[τ]+Sqrt[-℧^2+2 r[τ]] Sqrt[a^2+r[τ]^2] (a^4+ a^4 Cos[4 θ[τ]] (-1+r[τ])+3 a^4 r[τ]+4 a^2 ℧^2 r[τ]-4 a^2 r[τ]^2+8 a^2 r[τ]^3+ 8 r[τ]^5+4 a^2 Cos[2 θ[τ]] r[τ] (a^2-℧^2+r[τ]+2 r[τ]^2)) Sin[θ[τ]]^2 φ'[τ]^2), t'[0]==dt0, t[0]==0, r''[τ]==1/(8 (a^2 Cos[θ[τ]]^2+r[τ]^2)^3) (-8 q ℧ Sqrt[-℧^2+2 r[τ]] Sqrt[a^2+ r[τ]^2] (-a^2 Cos[θ[τ]]^2+r[τ]^2) r'[τ]+(8 a^2 q ℧ Sqrt[-℧^2+2 r[τ]] (-a^2 Cos[θ[τ]]^2+ r[τ]^2) Sin[θ[τ]]^2 r'[τ])/Sqrt[a^2+r[τ]^2]+(4 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^2 (a^2 Cos[2 θ[τ]] (-1+r[τ])-a^2 (1+r[τ])+2 r[τ] (-℧^2+r[τ])) r'[τ]^2)/(a^2+ r[τ]^2)-4 q ℧ (2 a^2 Cos[θ[τ]]^2-2 r[τ]^2) (a^2+r[τ]^2) (1+(℧^2- 2 r[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)) t'[τ]+(8 a^2 q ℧ (℧^2-2 r[τ]) (a^2 Cos[θ[τ]]^2- r[τ]^2) Sin[θ[τ]]^2 t'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)-(16 Sqrt[-℧^2+ 2 r[τ]] (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) (a^2 Cos[θ[τ]]^2+ r[τ]^2) r'[τ] t'[τ])/Sqrt[a^2+r[τ]^2]+8 (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) (a^2+ ℧^2-2 r[τ]+r[τ]^2) t'[τ]^2+8 a^2 (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 Sin[2 θ[τ]] r'[τ] θ'[τ]+ 8 r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 (a^2+℧^2-2 r[τ]+r[τ]^2) θ'[τ]^2+(8 a q ℧ (℧^2- 2 r[τ]) (a^2 Cos[θ[τ]]^2-r[τ]^2) (a^2+r[τ]^2) Sin[θ[τ]]^2 φ'[τ])/(a^2 Cos[θ[τ]]^2+ r[τ]^2)-(4 a q ℧ (2 a^2 Cos[θ[τ]]^2-2 r[τ]^2) (-(a^2+r[τ]^2)^2 Sin[θ[τ]]^2+a^2 (a^2+ ℧^2+(-2+r[τ]) r[τ]) Sin[θ[τ]]^4) φ'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)-(8 a Sqrt[-℧^2+ 2 r[τ]] (a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2 (-1+r[τ])+a^2 Cos[2 θ[τ]] (-1+r[τ])+ 2 r[τ] (-℧^2+r[τ]+r[τ]^2)) Sin[θ[τ]]^2 r'[τ] φ'[τ])/Sqrt[a^2+r[τ]^2]- 16 a (a^2 Cos[θ[τ]]^2+(℧^2-r[τ]) r[τ]) (a^2+℧^2-2 r[τ]+ r[τ]^2) Sin[θ[τ]]^2 t'[τ] φ'[τ]+(a^2+℧^2-2 r[τ]+r[τ]^2) (a^4+a^4 Cos[4 θ[τ]] (-1+ r[τ])+3 a^4 r[τ]+4 a^2 ℧^2 r[τ]-4 a^2 r[τ]^2+8 a^2 r[τ]^3+8 r[τ]^5+ 4 a^2 Cos[2 θ[τ]] r[τ] (a^2-℧^2+r[τ]+2 r[τ]^2)) Sin[θ[τ]]^2 φ'[τ]^2), r'[0]==dr0, r[0]==r0, θ''[τ]==-1/(2 (a^2 Cos[θ[τ]]^2+r[τ]^2)^4) ((2 a^2 Cos[θ[τ]] (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3 Sin[θ[τ]] r'[τ]^2)/(a^2+r[τ]^2)-2 a^2 q ℧ (℧^2-2 r[τ]) r[τ] Sin[2 θ[τ]] t'[τ]+ a^2 q ℧ r[τ] (a^2+2 ℧^2+a^2 Cos[2 θ[τ]]-4 r[τ]+2 r[τ]^2) Sin[2 θ[τ]] t'[τ]+ 2 a^2 Cos[θ[τ]] (℧^2-2 r[τ]) (a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[θ[τ]] t'[τ]^2+ 4 r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2)^3 r'[τ] θ'[τ]-2 a^2 Cos[θ[τ]] (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3 Sin[θ[τ]] θ'[τ]^2-4 a^3 q ℧ Cos[θ[τ]] (℧^2-2 r[τ]) r[τ] Sin[θ[τ]]^3 φ'[τ]+ 4 a q ℧ Cot[θ[τ]] r[τ] (-(a^2+r[τ]^2)^2 Sin[θ[τ]]^2+a^2 (a^2+℧^2+(-2+ r[τ]) r[τ]) Sin[θ[τ]]^4) φ'[τ]+(2 a Sqrt[-℧^2+2 r[τ]] (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3 Sin[2 θ[τ]] r'[τ] φ'[τ])/Sqrt[a^2+r[τ]^2]-2 a (℧^2-2 r[τ]) (a^2+ r[τ]^2) (a^2 Cos[θ[τ]]^2+r[τ]^2) Sin[2 θ[τ]] t'[τ] φ'[τ]+(a^2 Cos[θ[τ]]^2+ r[τ]^2) (2 a^2 Cos[θ[τ]] Sin[θ[τ]]^3 (-(a^2+r[τ]^2)^2+a^2 (a^2+℧^2+(-2+ r[τ]) r[τ]) Sin[θ[τ]]^2)+(a^2 Cos[θ[τ]]^2+r[τ]^2) (4 a^2 Cos[θ[τ]] (a^2+℧^2+ (-2+r[τ]) r[τ]) Sin[θ[τ]]^3-(a^2+r[τ]^2)^2 Sin[2 θ[τ]])) φ'[τ]^2), θ'[0]==dθ0, θ[0]==θ0, φ''[τ]==1/(4 (a^2 Cos[θ[τ]]^2+r[τ]^2)^3) ((4 a q ℧ (-a^4 Cos[θ[τ]]^4+r[τ]^4) r'[τ])/(a^2+ r[τ]^2)+(4 a (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) (a^2 Cos[θ[τ]]^2+ r[τ]^2)^2 r'[τ]^2)/(Sqrt[-℧^2+2 r[τ]] (a^2+r[τ]^2)^(3/2))+(4 a q ℧ Sqrt[-℧^2+ 2 r[τ]] (-a^2 Cos[θ[τ]]^2+r[τ]^2) t'[τ])/Sqrt[a^2+r[τ]^2]+(8 a (a^2 Cos[θ[τ]]^2+(℧^2- r[τ]) r[τ]) (a^2 Cos[θ[τ]]^2+r[τ]^2) r'[τ] t'[τ])/(a^2+r[τ]^2)+(4 a Sqrt[-℧^2+ 2 r[τ]] (a^2 Cos[θ[τ]]^2+℧^2 r[τ]-r[τ]^2) t'[τ]^2)/Sqrt[a^2+r[τ]^2]- 8 a q ℧ Cot[θ[τ]] r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2) θ'[τ]+(8 a Cot[θ[τ]] Sqrt[-℧^2+ 2 r[τ]] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 r'[τ] θ'[τ])/Sqrt[a^2+r[τ]^2]-8 a Cot[θ[τ]] (℧^2- 2 r[τ]) (a^2 Cos[θ[τ]]^2+r[τ]^2) t'[τ] θ'[τ]+(4 a r[τ] Sqrt[-℧^2+2 r[τ]] (a^2 Cos[θ[τ]]^2+ r[τ]^2)^2 θ'[τ]^2)/Sqrt[a^2+r[τ]^2]-(4 a^2 q ℧ Sqrt[-℧^2+2 r[τ]] (-a^2 Cos[θ[τ]]^2+ r[τ]^2) Sin[θ[τ]]^2 φ'[τ])/Sqrt[a^2+r[τ]^2]+(8 (a^2 Cos[θ[τ]]^2+ r[τ]^2) (a^4 Cos[θ[τ]]^2 (-1+r[τ])-r[τ] (a^2 (a^2+℧^2-r[τ])+2 a^2 Cot[θ[τ]]^2 (a^2+ r[τ]^2)+Csc[θ[τ]]^2 (-a^4+r[τ]^4))) Sin[θ[τ]]^2 r'[τ] φ'[τ])/(a^2+r[τ]^2)- (8 a^2 Sqrt[-℧^2+2 r[τ]] (a^2 Cos[θ[τ]]^2+℧^2 r[τ]- r[τ]^2) Sin[θ[τ]]^2 t'[τ] φ'[τ])/Sqrt[a^2+r[τ]^2]-Cot[θ[τ]] (a^2 Cos[θ[τ]]^2+ r[τ]^2) (a^2 (3 a^2-4 ℧^2+4 (a^2+℧^2) Cos[2 θ[τ]]+a^2 Cos[4 θ[τ]])+ 16 a^2 Cos[θ[τ]]^2 r[τ]^2+8 r[τ]^4+16 a^2 r[τ] Sin[θ[τ]]^2) θ'[τ] φ'[τ]+ (4 a Sqrt[-℧^2+2 r[τ]] Sin[θ[τ]]^2 (r[τ] (-a^4+r[τ]^4+a^2 (a^2+℧^2-r[τ]) Sin[θ[τ]]^2)+ Cos[θ[τ]]^2 (2 a^2 r[τ] (a^2+r[τ]^2)-a^4 (-1+r[τ]) Sin[θ[τ]]^2)) φ'[τ]^2)/Sqrt[a^2+r[τ]^2]), φ'[0]==dφ0, φ[0]==φ0 }; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 8) INTEGRATION |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) sol=NDSolve[DGL, {t, r, θ, φ}, {τ, 0, tmax+1/1000}, WorkingPrecision-> wp, MaxSteps-> Infinity, Method-> mta, InterpolationOrder-> All, StepMonitor :> (laststep=plunge; plunge=τ; stepsize=plunge-laststep;), Method->{"EventLocator", "Event" :> (If[stepsize<1*^-4, 0, 1])}]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 9) KOORDINATEN |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) X[τ_]:=Evaluate[Sqrt[r[τ]^2+a^2] Sin[θ[τ]] Cos[φ[τ]]/.sol][[1]]; (* kartesisch *) Y[τ_]:=Evaluate[Sqrt[r[τ]^2+a^2] Sin[θ[τ]] Sin[φ[τ]]/.sol][[1]]; Z[τ_]:=Evaluate[r[τ] Cos[θ[τ]]/.sol][[1]]; x[τ_]:=Evaluate[Sqrt[r[τ]^2+A^2] Sin[θ[τ]] Cos[φ[τ]]/.sol][[1]]; (* Plotkoordinaten *) y[τ_]:=Evaluate[Sqrt[r[τ]^2+A^2] Sin[θ[τ]] Sin[φ[τ]]/.sol][[1]]; z[τ_]:=Z[τ]; XYZ[τ_]:=Sqrt[X[τ]^2+Y[τ]^2+Z[τ]^2]; XY[τ_]:=Sqrt[X[τ]^2+Y[τ]^2]; (* kartesischer Radius *) Xyz[{x_, y_, z_}, α_]:={x Cos[α]-y Sin[α], x Sin[α]+y Cos[α], z}; (* Rotationsmatrix *) xYz[{x_, y_, z_}, β_]:={x Cos[β]+z Sin[β], y, z Cos[β]-x Sin[β]}; xyZ[{x_, y_, z_}, ψ_]:={x, y Cos[ψ]-z Sin[ψ], y Sin[ψ]+z Cos[ψ]}; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 10) PLOT EINSTELLUNGEN |||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) PR=r1; (* Plot Range *) VP={r0, r0, r0}; (* Perspektive x,y,z *) d1=10; (* Schweiflänge *) plp=50; (* Flächenplot Details *) Plp=Automatic; (* Kurven Details *) w1l=0; w2l=0; w1r=0; w2r=0; (* Startperspektiven *) Mrec=100; mrec=10; (* Parametric Plot Subdivisionen *) imgsize=380; (* Bildgröße *) s[text_]:=Style[text, FontFamily->"Consolas", FontSize->11]; (* Anzeigestil *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 11) PLOT NACH EIGENZEIT ||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) Plot[R[tt], {tt, 0, plunge}, Frame->True, PlotStyle->Red, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, All}, GridLines->{{}, {rA, rI}}, PlotLabel -> "r(τ)"] Plot[Mod[180/Pi Θ[tt], 360], {tt, 0, plunge}, Frame->True, PlotStyle->Cyan, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "θ(τ)"] Plot[Mod[180/Pi Φ[tt], 360], {tt, 0, plunge}, Frame->True, PlotStyle->Magenta, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "φ(τ)"] Plot[v[tt], {tt, 0, plunge}, Frame->True, PlotStyle->Orange, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, All}, GridLines->{{}, {0, 1}}, PlotLabel -> "v(τ)"] displayP[T_]:=Grid[{ {If[μ==0, s[" affineP"], s[" τ propr"]], " = ", s[n0[T]], s["GM/c³"], s[dp]}, {s[" t doran"], " = ", s[n0[т[tp]]], s["GM/c³"], s[dp]}, {s[" t bookp"], " = ", s[n0[tcr[tp]]], s["GM/c³"], s[dp]}, {s[" ṫ total"], " = ", s[n0[dt[tp]]], s["dt/dτ"], s[dp]}, {s[" ς gravt"], " = ", s[n0[ς[tp]]], s["dt/dτ"], s[dp]}, {s[" γ kinet"], " = ", s[n0[1/Sqrt[1-v[tp]^2]]], s["dt/dτ"], s[dp]}, {s[" R carts"], " = ", s[n0[XYZ[tp]]], s["GM/c²"], s[dp]}, {s[" x carts"], " = ", s[n0[X[tp]]], s["GM/c²"], s[dp]}, {s[" y carts"], " = ", s[n0[Y[tp]]], s["GM/c²"], s[dp]}, {s[" z carts"], " = ", s[n0[Z[tp]]], s["GM/c²"], s[dp]}, {s[" r coord"], " = ", s[n0[R[tp]]], s["GM/c²"], s[dp]}, {s[" φ longd"], " = ", s[n0[Φ[tp] 180/π]], s["deg"], s[dp]}, {s[" θ lattd"], " = ", s[n0[Θ[tp] 180/π]], s["deg"], s[dp]}, {s[" d¹r/dτ¹"], " = ", s[n0[R'[tp]]], s["c"], s[dp]}, {s[" d¹φ/dτ¹"], " = ", s[n0[Φ'[tp]]], s["c\.b3/G/M"], s[dp]}, {s[" d¹θ/dτ¹"], " = ", s[n0[Θ'[tp]]], s["c\.b3/G/M"], s[dp]}, {s[" d\.b2r/dτ\.b2"], " = ", s[n0[R''[tp]]], s["c⁴/G/M"], s[dp]}, {s[" d\.b2φ/dτ\.b2"], " = ", s[n0[Φ''[tp]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" d\.b2θ/dτ\.b2"], " = ", s[n0[Θ''[tp]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" a SpinP"], " = ", s[n0[a]], s["GM²/c"], s[dp]}, {s[" ℧ cntrl"], " = ", s[n0[℧]], s["Q/M"], s[dp]}, {s[" q prtcl"], " = ", s[n0[q]], s["q/m"], s[dp]}, {s[" M irred"], " = ", s[N[mirr]], s["M"], s[dp]}, {s[" E kinet"], " = ", s[n0[ekin[tp]]], s["mc²"], s[dp]}, {s[" E poten"], " = ", s[n0[epot[tp]]], s["mc²"], s[dp]}, {s[" E total"], " = ", s[n0[ε]], s["mc²"], s[dp]}, {s[" CarterQ"], " = ", s[n0[Qk]], s["GMm/c"], s[dp]}, {s[" L axial"], " = ", s[n0[Lz]], s["GMm/c"], s[dp]}, {s[" L polar"], " = ", s[n0[pΘ[tp]]], s["GMm/c"], s[dp]}, {s[" g acclr"], " = ", s[n0[v'[tp]]], s["c⁴/G/M"], s[dp]}, {s[" ω fdrag"], " = ", s[n0[Abs[ω[tp]]]], s["c³/G/M"], s[dp]}, {s[" v fdrag"], " = ", s[n0[Abs[й[tp]]]], s["c"], s[dp]}, {s[" Ω fdrag"], " = ", s[n0[Abs[Ω[tp]]]], s["c"], s[dp]}, {s[" v propr"], " = ", s[n0[v[tp]/Sqrt[1-v[tp]^2]]], s["c"], s[dp]}, {s[" v escpe"], " = ", s[n0[ж[tp]]], s["c"], s[dp]}, {s[" v obsvd"], " = ", s[n0[ß[tp]]], s["c"], s[dp]}, {s[" v r,loc"], " = ", s[n0[vr[tp]]], s["c"], s[dp]}, {s[" v θ,loc"], " = ", s[n0[vθ[tp]]], s["c"], s[dp]}, {s[" v φ,loc"], " = ", s[n0[vφ[tp]]], s["c"], s[dp]}, {s[" v local"], " = ", s[n0[v[tp]]], s["c"], s[dp]}, {s[" "], s[" "], s[" "], s[" "]}}, Alignment-> Left, Spacings-> {0, 0}]; plot1b[{xx_, yy_, zz_, tk_, w1_, w2_}]:= (* Animation *) Show[ Graphics3D[{ {PointSize[0.011], Red, Point[ Xyz[xyZ[{x[tp], y[tp], z[tp]}, w1], w2]]}}, ImageSize-> imgsize, PlotRange-> { {-(2 Sign[Abs[xx]]+1) PR, +(2 Sign[Abs[xx]]+1) PR}, {-(2 Sign[Abs[yy]]+1) PR, +(2 Sign[Abs[yy]]+1) PR}, {-(2 Sign[Abs[zz]]+1) PR, +(2 Sign[Abs[zz]]+1) PR} }, SphericalRegion->False, ImagePadding-> 1], horizons[A, None, w1, w2], If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[prm] a, Cos[prm] a, 0}, w1], w2], {prm, 0, 2π}, PlotStyle -> {Thickness[0.005], Orange}]], If[a==0, {}, Graphics3D[{{PointSize[0.009], Purple, Point[ Xyz[xyZ[{ Sin[-φ0-ω0 т[tp]+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 т[tp]+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2]]}}]], If[tk==0, {}, If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[-φ0-ω0 т[tt]+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 т[tt]+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2], {tt, Max[0, д[т[tp]-1/2 π/ω0]], tp}, PlotStyle -> {Thickness[0.001], Dashed, Purple}, PlotPoints-> Automatic, MaxRecursion-> 12]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, If[tp<0, Min[0, tp+d1], Max[0, tp-d1]], tp}, PlotStyle-> {Thickness[0.004]}, ColorFunction-> Function[{x, y, z, t}, Hue[0, 1, 0.5, If[tp<0, Max[Min[(+tp+(-t+d1))/d1, 1], 0], Max[Min[(-tp+(t+d1))/d1, 1], 0]]]], ColorFunctionScaling-> False, PlotPoints-> Automatic, MaxRecursion-> mrec]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, 0, If[tp<0, Min[-1*^-16, tp+d1/3], Max[1*^-16, tp-d1/3]]}, PlotStyle-> {Thickness[0.004], Opacity[0.6], Darker[Gray]}, PlotPoints-> Plp, MaxRecursion-> mrec]]], ViewPoint-> {xx, yy, zz}]; Do[ Print[Rasterize[Grid[{{ plot1b[{0, -Infinity, 0, tp, w1l, w2l}], plot1b[{0, 0, +Infinity, tp, w1r, w2r}], displayP[tp] }, {" ", " ", " "} }, Alignment->Left]]], {tp, 0, tMax, tMax/1}] (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 12) PLOT NACH KOORDINATENZEIT ||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) Plot[R[д[tt]], {tt, 0, TMax}, Frame->True, PlotStyle->Red, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, All}, GridLines->{{}, {rA, rI}}, PlotLabel -> "r(t)"] Plot[Mod[180/Pi Θ[д[tt]], 360], {tt, 0, TMax}, Frame->True, PlotStyle->Cyan, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "θ(t)"] Plot[Mod[180/Pi Φ[д[tt]], 360], {tt, 0, TMax}, Frame->True, PlotStyle->Magenta, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "φ(t)"] Plot[v[д[tt]], {tt, 0, TMax}, Frame->True, PlotStyle->Orange, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, All}, GridLines->{{}, {0, 1}}, PlotLabel -> "v(t)"] displayC[T_]:=Grid[{ {s[" t doran"], " = ", s[n0[tk]], s["GM/c³"], s[dp]}, {s[" t bookp"], " = ", s[n0[tcr[T]]], s["GM/c³"], s[dp]}, {If[μ==0, s[" affineP"], s[" τ propr"]], " = ", s[n0[T]], s["GM/c³"], s[dp]}, {s[" ṫ total"], " = ", s[n0[dt[T]]], s["dt/dτ"], s[dp]}, {s[" ς gravt"], " = ", s[n0[ς[T]]], s["dt/dτ"], s[dp]}, {s[" γ kinet"], " = ", s[n0[1/Sqrt[1-v[T]^2]]], s["dt/dτ"], s[dp]}, {s[" R carts"], " = ", s[n0[XYZ[T]]], s["GM/c²"], s[dp]}, {s[" x carts"], " = ", s[n0[X[T]]], s["GM/c²"], s[dp]}, {s[" y carts"], " = ", s[n0[Y[T]]], s["GM/c²"], s[dp]}, {s[" z carts"], " = ", s[n0[Z[T]]], s["GM/c²"], s[dp]}, {s[" r coord"], " = ", s[n0[R[T]]], s["GM/c²"], s[dp]}, {s[" φ longd"], " = ", s[n0[Φ[T] 180/π]], s["deg"], s[dp]}, {s[" θ lattd"], " = ", s[n0[Θ[T] 180/π]], s["deg"], s[dp]}, {s[" d¹r/dτ¹"], " = ", s[n0[R'[T]]], s["c"], s[dp]}, {s[" d¹φ/dτ¹"], " = ", s[n0[Φ'[T]]], s["c\.b3/G/M"], s[dp]}, {s[" d¹θ/dτ¹"], " = ", s[n0[Θ'[T]]], s["c\.b3/G/M"], s[dp]}, {s[" d\.b2r/dτ\.b2"], " = ", s[n0[R''[T]]], s["c⁴/G/M"], s[dp]}, {s[" d\.b2φ/dτ\.b2"], " = ", s[n0[Φ''[T]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" d\.b2θ/dτ\.b2"], " = ", s[n0[Θ''[T]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" a SpinP"], " = ", s[n0[a]], s["GM²/c"], s[dp]}, {s[" ℧ cntrl"], " = ", s[n0[℧]], s["Q/M"], s[dp]}, {s[" q prtcl"], " = ", s[n0[q]], s["q/m"], s[dp]}, {s[" M irred"], " = ", s[N[mirr]], s["M"], s[dp]}, {s[" E kinet"], " = ", s[n0[ekin[T]]], s["mc²"], s[dp]}, {s[" E poten"], " = ", s[n0[epot[T]]], s["mc²"], s[dp]}, {s[" E total"], " = ", s[n0[ε]], s["mc²"], s[dp]}, {s[" CarterQ"], " = ", s[n0[Qk]], s["GMm/c"], s[dp]}, {s[" L axial"], " = ", s[n0[Lz]], s["GMm/c"], s[dp]}, {s[" L polar"], " = ", s[n0[pΘ[T]]], s["GMm/c"], s[dp]}, {s[" g acclr"], " = ", s[n0[v'[T]]], s["c⁴/G/M"], s[dp]}, {s[" ω fdrag"], " = ", s[n0[Abs[ω[T]]]], s["c³/G/M"], s[dp]}, {s[" v fdrag"], " = ", s[n0[Abs[й[T]]]], s["c"], s[dp]}, {s[" Ω fdrag"], " = ", s[n0[Abs[Ω[T]]]], s["c"], s[dp]}, {s[" v propr"], " = ", s[n0[v[T]/Sqrt[1-v[T]^2]]], s["c"], s[dp]}, {s[" v escpe"], " = ", s[n0[ж[T]]], s["c"], s[dp]}, {s[" v obsvd"], " = ", s[n0[ß[T]]], s["c"], s[dp]}, {s[" v r,loc"], " = ", s[n0[vr[T]]], s["c"], s[dp]}, {s[" v θ,loc"], " = ", s[n0[vθ[T]]], s["c"], s[dp]}, {s[" v φ,loc"], " = ", s[n0[vφ[T]]], s["c"], s[dp]}, {s[" v local"], " = ", s[n0[v[T]]], s["c"], s[dp]}, {s[" "], s[" "], s[" "], s[" "]}}, Alignment-> Left, Spacings-> {0, 0}]; plot1a[{xx_, yy_, zz_, tk_, w1_, w2_}]:= (* Animation *) Show[ Graphics3D[{ {PointSize[0.011], Red, Point[ Xyz[xyZ[{x[T], y[T], z[T]}, w1], w2]]}}, ImageSize-> imgsize, PlotRange-> { {-(2 Sign[Abs[xx]]+1) PR, +(2 Sign[Abs[xx]]+1) PR}, {-(2 Sign[Abs[yy]]+1) PR, +(2 Sign[Abs[yy]]+1) PR}, {-(2 Sign[Abs[zz]]+1) PR, +(2 Sign[Abs[zz]]+1) PR} }, SphericalRegion->False, ImagePadding-> 1], horizons[A, None, w1, w2], If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[prm] a, Cos[prm] a, 0}, w1], w2], {prm, 0, 2π}, PlotStyle -> {Thickness[0.005], Orange}]], If[a==0, {}, Graphics3D[{{PointSize[0.009], Purple, Point[ Xyz[xyZ[{ Sin[-φ0-ω0 tk+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 tk+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2]]}}]], If[tk==0, {}, If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[-φ0-ω0 tt+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 tt+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2], {tt, Max[0, tk-1/2 π/ω0], tk}, PlotStyle -> {Thickness[0.001], Dashed, Purple}, PlotPoints-> Automatic, MaxRecursion-> mrec]]], Block[{$RecursionLimit = Mrec}, If[tk==0, {}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, If[TMax<0, Min[0, T+d1], Max[0, T-d1]], T}, PlotStyle-> {Thickness[0.004]}, ColorFunction-> Function[{x, y, z, t}, Hue[0, 1, 0.5, If[TMax<0, Max[Min[(+T+(-t+d1))/d1, 1], 0] , Max[Min[(-T+(t+d1))/d1, 1], 0]]]], ColorFunctionScaling-> False, PlotPoints-> Automatic, MaxRecursion-> mrec]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, 0, If[Tmax<0, Min[-1*^-16, T+d1/3], Max[1*^-16, T-d1/3]]}, PlotStyle-> {Thickness[0.004], Opacity[0.6], Darker[Gray]}, PlotPoints-> Plp, MaxRecursion-> mrec]]], ViewPoint-> {xx, yy, zz}]; Quiet[Do[ Print[Rasterize[Grid[{{ plot1a[{0, -Infinity, 0, tk, w1l, w2l}], plot1a[{0, 0, Infinity, tk, w1r, w2r}], displayC[Quiet[д[tk]]] }, {" ", " ", " "} }, Alignment->Left]]], {tk, 0, TMax, TMax/1}]] (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 13) EXPORTOPTIONEN |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* Export als HTML Dokument *) (* Export["Y:\\export\\dateiname.html", EvaluationNotebook[], "GraphicsOutput" -> "PNG"] *) (* Export direkt als Bildsequenz *) (* Do[Export["Y:\\export\\dateiname" <> ToString[tk] <> ".png", Rasterize[...] *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||| http://kerr.newman.yukerez.net ||||| Simon Tyran, Vienna |||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)