(* Simulator-Code für Photonen, geladene und neutrale Teilchen *) (* in Boyer Lindquist Koordinaten *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||| Mathematica | kerr.newman.yukterez.net | 06.08.2017 - 13.06.2020, Version 25 |||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) wp=MachinePrecision; mt1=Automatic; mt2={"EquationSimplification"-> "Residual"}; mt3={"ImplicitRungeKutta", "DifferenceOrder"-> 20}; mt4={"StiffnessSwitching", Method-> {"ExplicitRungeKutta", Automatic}}; mt5={"EventLocator", "Event"-> (r[τ]-1001/1000 rA)}; mta=mt1; (* mt1: Speed, mt3: Accuracy *) dgl=1; (* 1: Full d²x/dτ², 2: Mixed dx/dτ, 3: Testmodul, 4: Weak Field, 5: Newton *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 1) STARTBEDINGUNGEN EINGEBEN |||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) A=a; (* pseudosphärisch [BL]: A=0, kartesisch [KS]: A=a *) tmax=300; (* Eigenzeit *) Tmax=300; (* Koordinatenzeit *) TMax=Min[Tmax, т[plunge-1/100]]; tMax=Min[tmax, plunge-1/100]; (* Integrationsende *) r0 = Sqrt[7^2-a^2]; (* Startradius *) r1 = r0+2; (* Endradius wenn v0=vr0=vr1 *) θ0 = π/2; (* Breitengrad *) φ0 = 0; (* Längengrad *) a = 9/10; (* Spinparameter *) ℧ = 2/5; (* spezifische Ladung des schwarzen Lochs *) q = 0; (* spezifische Ladung des Testkörpers *) v0 = 2/5; (* Anfangsgeschwindigkeit *) α0 = 0; (* vertikaler Abschusswinkel *) i0 = ArcTan[5/6]; (* Bahninklinationswinkel *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 2) GESCHWINDIGKEITS-, ENERGIE UND DREHIMPULSKOMPONENTEN ||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) vr0=v0 Sin[α0]; (* radiale Geschwindigkeitskomponente *) vθ0=v0 Cos[α0] Sin[i0]; (* longitudinale Geschwindigkeitskomponente *) vφ0=v0 Cos[α0] Cos[i0]; (* latitudinale Geschwindigkeitskomponente *) vrj[τ_]:=R'[τ]/Sqrt[Δi[τ]] Sqrt[Σi[τ] (1+μ v[τ]^2)]; vθj[τ_]:=Θ'[τ] Sqrt[Σi[τ] (1+μ v[τ]^2)]; vφj[τ_]:=Evaluate[(-(((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+℧^2-2 r[τ]+r[τ]^2) Sin[θ[τ]] Sqrt[1- μ^2 v[τ]^2] (-φ'[τ]-(a q ℧ r[τ])/((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+℧^2-2 r[τ]+r[τ]^2))+ (ε Csc[θ[τ]]^2 (a (-a^2-℧^2+2 r[τ]-r[τ]^2) Sin[θ[τ]]^2+a (a^2+ r[τ]^2) Sin[θ[τ]]^2))/((a^2 Cos[θ[τ]]^2+r[τ]^2) (a^2+℧^2-2 r[τ]+r[τ]^2))+(a q ℧ r[τ] (a^2+ ℧^2-2 r[τ]+r[τ]^2-a^2 Sin[θ[τ]]^2))/((a^2 Cos[θ[τ]]^2+r[τ]^2)^2 (a^2+℧^2-2 r[τ]+ r[τ]^2) (1-μ^2 v[τ]^2))))/((a^2+℧^2-2 r[τ]+r[τ]^2-a^2 Sin[θ[τ]]^2) Sqrt[((a^2+r[τ]^2)^2- a^2 (a^2+℧^2-2 r[τ]+r[τ]^2) Sin[θ[τ]]^2)/(a^2 Cos[θ[τ]]^2+r[τ]^2)]))) /. sol][[1]] vtj[τ_]:=Sqrt[vrj[τ]^2+vθj[τ]^2+vφj[τ]^2]; vr[τ_]:=vrj[τ]/vtj[τ]*v[τ]; vθ[τ_]:=vθj[τ]/vtj[τ]*v[τ]; vφ[τ_]:=vφj[τ]/vtj[τ]*v[τ]; VΦ[τ_]:=Sqrt[v[τ]^2-vθ[τ]^2-vr[τ]^2]; Vφ[τ_]:=If[q==0, Vφ[τ], VΦ[τ]]; x0[A_]:=Sqrt[r0^2+A^2] Sin[θ0] Cos[φ0]; (* Anfangskoordinaten *) y0[A_]:=Sqrt[r0^2+A^2] Sin[θ0] Sin[φ0]; z0[A_]:=r0 Cos[θ0]; ε0=Sqrt[δ Ξ/χ]/j[v0]+Lz ω0; ε=ε0+((q r0 ℧)/(r0^2+a^2 Cos[θ0]^2)); εζ:=Sqrt[Δ Σ/Χ]/j[ν]+Lz ωζ+((q r[τ] ℧)/(r[τ]^2+a^2 Cos[θ[τ]]^2)); LZ=vφ0 Ы/j[v0]; Lz=LZ+((q a r0 ℧ Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)) j[v0]^2; Lζ:=vφ0 я/j[ν]+0((q a r[τ] ℧ Sin[θ[τ]]^2)/(r[τ]^2+a^2 Cos[θ[τ]]^2)); pθ0=vθ0 Sqrt[Ξ]/j[v0]; pθζ:=θ'[τ] Σ; pr0=vr0 Sqrt[(Ξ/δ)/j[v0]^2]; Qk=Limit[pθ0^2+(Lz^2 Csc[θ1]^2-a^2 (ε^2+μ)) Cos[θ1]^2, θ1->θ0]; (* Carter Konstante *) Q=Limit[pθ0^2+(Lz^2 Csc[θ1]^2-a^2 (ε^2+μ)) Cos[θ1]^2, θ1->θ0]; Qζ:=pθζ^2+(Lz^2 Csc[θ[τ]]^2-a^2 (εζ^2+μ)) Cos[θ[τ]]^2; k=Q+Lz^2+a^2 (ε^2+μ); kζ:=Qζ+Lz^2+a^2 (εζ^2+μ); (* ISCO *) isco = rISCO/.Solve[0 == rISCO (6 rISCO-rISCO^2-9 ℧^2+3 a^2)+4 ℧^2 (℧^2-a^2)- 8 a (rISCO-℧^2)^(3/2) && rISCO>=rA, rISCO][[1]]; μ=If[Abs[v0]==1, 0, If[Abs[v0]<1, -1, 1]]; (* Baryon: μ=-1, Photon: μ=0 *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 3) FLUCHTGESCHWINDIGKEIT UND BENÖTIGTER ABSCHUSSWINKEL |||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) vEsc=If[q==0, ж0, Abs[(\[Sqrt](r0^2 (r0^2 (δ Ξ-χ)+2 q r0 χ ℧-q^2 χ ℧^2)+ 2 a^2 r0 (r0 δ Ξ-r0 χ+q χ ℧) Cos[θ0]^2+a^4 (δ Ξ- χ) Cos[θ0]^4))/(Sqrt[χ] (r0 (r0-q ℧)+a^2 Cos[θ0]^2))]]; (* horizontaler Photonenkreiswinkel, i0 *) iP[r0_, a_]:=Normal[iPh/.NSolve[1/(8 (r0^2+a^2 Cos[θ0]^2)^3) (a^2+(-2+r0) r0+ ℧^2) (8 r0 (r0^2+a^2 Cos[θ0]^2) Sin[iPh]^2+1/((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2)) 8 a (Cos[iPh] Sin[θ0] (a^2-2 r0+r0^2+℧^2-a^2 Sin[θ0]^2) Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+(a (a^2+r0^2) Sin[θ0]^2+ a (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^2) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2))) (-(1/((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2)))2 a^2 Cot[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+ r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2- ℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2)))+1/((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2)) 2 r0 (r0- ℧^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2- 2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+ (a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))))+1/((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2)) 8 Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2- 2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+ (a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))) (1/((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2)) a^2 Cot[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+ a (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2- ℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2- a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0-℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+ r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2- 2 r0+r0^2+℧^2) Sin[θ0]^2)))+1/((a^2-2 r0+r0^2+℧^2) (r0^2+a^2 Cos[θ0]^2)) r0 (-r0+ ℧^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (-a (a^2+r0^2) Sin[θ0]^2+a (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+ ((a^2+r0^2)^2 Sin[θ0]^2+a^2 (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^4) (Sqrt[((a^2-2 r0+r0^2+ ℧^2) (r0^2+a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0- ℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2))))+1/((a^2-2 r0+r0^2+ ℧^2)^2 (r0^2+a^2 Cos[θ0]^2)^2) Csc[θ0]^2 (Cos[iPh] Sin[θ0] (a^2-2 r0+r0^2+℧^2- a^2 Sin[θ0]^2) Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+a^2 Cos[θ0]^2)]+ (a (a^2+r0^2) Sin[θ0]^2+a (-a^2+2 r0-r0^2-℧^2) Sin[θ0]^2) (Sqrt[((a^2-2 r0+r0^2+℧^2) (r0^2+ a^2 Cos[θ0]^2))/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)]+(a (2 r0- ℧^2) Cos[iPh] Sin[θ0] Sqrt[((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)/(r0^2+ a^2 Cos[θ0]^2)])/((a^2+r0^2)^2-a^2 (a^2-2 r0+r0^2+℧^2) Sin[θ0]^2)))^2 (r0 (a^2 (3 a^2+ 4 ℧^2+4 (a-℧) (a+℧) Cos[2 θ0]+a^2 Cos[4 θ0])+8 r0 (r0^3+2 a^2 r0 Cos[θ0]^2- a^2 Sin[θ0]^2))+2 a^4 Sin[2 θ0]^2))==0,iPh,Reals]][[1]]/.C[1]->0 (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 4) HORIZONTE UND ERGOSPHÄREN RADIEN ||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) rE=1+Sqrt[1-a^2 Cos[θ]^2-℧^2]; (* äußere Ergosphäre *) RE[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rE^2+A^2] Sin[θ] Cos[φ], Sqrt[rE^2+A^2] Sin[θ] Sin[φ], rE Cos[θ]}, w1], w2]; rG=1-Sqrt[1-a^2 Cos[θ]^2-℧^2]; (* innere Ergosphäre *) RG[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rG^2+A^2] Sin[θ] Cos[φ], Sqrt[rG^2+A^2] Sin[θ] Sin[φ], rG Cos[θ]}, w1], w2]; rA=1+Sqrt[1-a^2-℧^2]; (* äußerer Horizont *) RA[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rA^2+A^2] Sin[θ] Cos[φ], Sqrt[rA^2+A^2] Sin[θ] Sin[φ], rA Cos[θ]}, w1], w2]; rI=1-Sqrt[1-a^2-℧^2]; (* innerer Horizont *) RI[A_, w1_, w2_]:=Xyz[xyZ[ {Sqrt[rI^2+A^2] Sin[θ] Cos[φ], Sqrt[rI^2+A^2] Sin[θ] Sin[φ], rI Cos[θ]}, w1], w2]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 5) HORIZONTE UND ERGOSPHÄREN PLOT ||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) horizons[A_, mesh_, w1_, w2_]:=Show[ ParametricPlot3D[RE[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> mesh, PlotPoints -> plp, PlotStyle -> Directive[Blue, Opacity[0.10]]], ParametricPlot3D[RA[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Cyan, Opacity[0.15]]], ParametricPlot3D[RI[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Red, Opacity[0.25]]], ParametricPlot3D[RG[A, w1, w2], {φ, 0, 2 π}, {θ, 0, π}, Mesh -> None, PlotPoints -> plp, PlotStyle -> Directive[Red, Opacity[0.35]]]]; BLKS:=Grid[{{horizons[a, 35, 0, 0], horizons[0, 35, 0, 0]}}]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 6) FUNKTIONEN ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) j[v_]:=Sqrt[1-μ^2 v^2]; (* Lorentzfaktor *) mirr=Sqrt[2-℧^2+2 Sqrt[1-a^2-℧^2]]/2; (* irreduzible Masse *) я=Sqrt[Χ/Σ]Sin[θ[τ]]; (* axialer Umfangsradius *) яi[τ_]:=Sqrt[Χi[τ]/Σi[τ]]Sin[Θ[τ]]; Ы=Sqrt[χ/Ξ]Sin[θ0]; Σ=r[τ]^2+a^2 Cos[θ[τ]]^2; (* poloidialer Umfangsradius *) Σi[τ_]:=R[τ]^2+a^2 Cos[Θ[τ]]^2; Ξ=r0^2+a^2 Cos[θ0]^2; Δ=r[τ]^2-2r[τ]+a^2+℧^2; Δr[r_]:=r^2-2r+a^2+℧^2; Δi[τ_]:=R[τ]^2-2R[τ]+a^2+℧^2; δ=r0^2-2r0+a^2+℧^2; Χ=(r[τ]^2+a^2)^2-a^2 Sin[θ[τ]]^2 Δ; Χi[τ_]:=(R[τ]^2+a^2)^2-a^2 Sin[Θ[τ]]^2 Δi[τ]; χ=(r0^2+a^2)^2-a^2 Sin[θ0]^2 δ; Xj=a Sin[θ0]^2; xJ[τ_]:=a Sin[Θ[τ]]^2; XJ=a Sin[θ[τ]]^2; Pr[r_]:=ε(r^2+a^2)+℧ q r-a Lz; Pt[τ_]:=ε(R[τ]^2+a^2)+℧ q R[τ]-a Lz; Pτ=ε(r[τ]^2+a^2)+℧ q r[τ]-a Lz; pτ=ε(r0^2+a^2)+℧ q r0-a Lz; Vr[r_]:=Pr[r]^2-Δr[r](μ^2 r^2+(Lz-a ε)^2+Q); (* effektives radiales Potential *) Vτ=Pτ^2-Δ(μ^2 r[τ]^2+(Lz-a ε)^2+Q); Vθ[θ_]:=Q-Cos[θ]^2(a^2 (μ^2-ε^2)+Lz^2 Sin[θ]^(-2)); (* effektives latitudinales Potential *) т[τ_]:=Evaluate[t[τ]/.sol][[1]]; (* Koordinatenzeit nach Eigenzeit *) д[ξ_]:=Quiet[zt /.FindRoot[т[zt]-ξ, {zt, 0}]]; (* Eigenzeit nach Koordinatenzeit *) T :=Quiet[д[tk]]; ю[τ_]:=Evaluate[t'[τ]/.sol][[1]]; γ[τ_]:=If[μ==0, "Infinity", ю[τ]]; (* totale ZD *) R[τ_]:=Evaluate[r[τ]/.sol][[1]]; (* Boyer-Lindquist Radius *) Φ[τ_]:=Evaluate[φ[τ]/.sol][[1]]; Θ[τ_]:=Evaluate[θ[τ]/.sol][[1]]; ß[τ_]:=Sqrt[X'[τ]^2+Y'[τ]^2+Z'[τ]^2 ]/ю[τ]; ς[τ_]:=Sqrt[Χi[τ]/Δi[τ]/Σi[τ]]; ς0=Sqrt[χ/δ/Ξ]; (* gravitative ZD *) ω[τ_]:=(a(2R[τ]-℧^2))/Χi[τ]; ω0=(a(2r0-℧^2))/χ; ωζ=(a(2r[τ]-℧^2))/Χ; (* F-Drag Winkelg *) Ω[τ_]:=ω[τ] Sqrt[X[τ]^2+Y[τ]^2]; (* Frame Dragging beobachtete Geschwindigkeit *) й[τ_]:=ω[τ] яi[τ] ς[τ]; й0=ω0 Ы ς0; (* Frame Dragging lokale Geschwindigkeit *) ж[τ_]:=Sqrt[ς[τ]^2-1]/ς[τ]; ж0=Sqrt[ς0^2-1]/ς0; (* Fluchtgeschwindigkeit *) V[τ_]:=If[μ==0, 1, Re[Sqrt[-ς[τ]^2+ю[τ]^2]/ю[τ]]]; (* Fluchtgeschwindigkeit von r0 nach r1 *) vd1:=v1/.NSolve[Sqrt[δ Ξ/χ]/Sqrt[1-v1^2]+((q r0 ℧)/(r0^2+a^2 Cos[θ0]^2))==Sqrt[((a^2+ (-2+r1) r1+℧^2) (r1^2+a^2 Cos[θ0]^2))/((a^2+r1^2)^2-a^2 (a^2+(-2+r1) r1+℧^2) Sin[θ0]^2)]+ (a^2 q r1 ℧ (2 r1-℧^2) Sin[θ0]^2)/((r1^2+a^2 Cos[θ0]^2) ((a^2+r1^2)^2-a^2 (a^2+(-2+r1) r1+ ℧^2) Sin[θ0]^2))+((q r1 ℧)/(r1^2+a^2 Cos[θ0]^2))&&v1>0,v1][[1]]; (* lokale Dreiergeschwindigkeit *) vd[τ_]:=Abs[(Sqrt[Δ Σ^3 Χ-ε^2 Σ^2 Χ^2-2 a Lz ε Σ^2 Χ ℧^2-a^2 Lz^2 Σ^2 ℧^4+ 4 a Lz ε Σ^2 Χ r[τ]+2 q ε Σ Χ^2 ℧ r[τ]+4 a^2 Lz^2 Σ^2 ℧^2 r[τ]+2 a Lz q Σ Χ ℧^3 r[τ]- 4 a^2 Lz^2 Σ^2 r[τ]^2-4 a Lz q Σ Χ ℧ r[τ]^2-q^2 Χ^2 ℧^2 r[τ]^2])/(ε Σ Χ+ a Lz Σ ℧^2-2 a Lz Σ r[τ]-q Χ ℧ r[τ])]; v[τ_]:=If[μ==0, 1, Evaluate[vlt'[τ]/.sol][[1]]]; vnt[τ_]:=Evaluate[Sqrt[(φ'[τ] r[τ]/Csc[θ[τ]])^2+(θ'[τ] r[τ])^2+r'[τ]^2]/.sol][[1]] ν:=If[μ==0, 1, Re[Sqrt[(Δ Σ-Χ(εζ-Lζ ωζ)^2)/(μ Χ (εζ-Lζ ωζ)^2)]]]; vesc[τ_]:=Abs[(\[Sqrt](R[τ]^2 (R[τ]^2 (Δi[τ] Σi[τ]-Χi[τ])+2 q R[τ] Χi[τ] ℧-q^2 Χi[τ] ℧^2)+ 2 a^2 R[τ] (R[τ] Δi[τ] Σi[τ]-R[τ] Χi[τ]+q Χi[τ] ℧) Cos[Θ[τ]]^2+a^4 (Δi[τ] Σi[τ]- Χi[τ]) Cos[Θ[τ]]^4))/(Sqrt[Χi[τ]] (R[τ] (R[τ]-q ℧)+a^2 Cos[Θ[τ]]^2))]; dst[τ_]:=Evaluate[str[τ]/.sol][[1]]; (* Strecke *) pΘ[τ_]:=Evaluate[Ξ θ'[τ] /. sol][[1]]; pR[τ_]:=Evaluate[r'[τ] Ξ/δ /. sol][[1]]; epot[τ_]:=ε+μ-ekin[τ]; (* potentielle Energie *) ekin[τ_]:=If[μ==0, ς[τ], 1/Sqrt[1-v[τ]^2]-1]; (* kinetische Energie *) drwf=vr0/(Sqrt[(2+r0)/r0] Sqrt[1-v0^2 μ^2]); duwf=vθ0/(Sqrt[r0^2] Sqrt[1-v0^2 μ^2]); dfwf=(vφ0 Csc[θ0]^4 (r0^2 Sin[θ0]^2)^(3/2))/(r0^4 Sqrt[1-v0^2 μ^2]); dtwf=1/(-2+r0) (-2 a Sin[θ0]^2 dfwf+r0 Sqrt[-μ+(2 μ)/r0+(1-4/r0^2) drwf^2+(-2+r0) r0 duwf^2- 2 r0 Sin[θ0]^2 dfwf^2+r0^2 Sin[θ0]^2 dfwf^2+(4 a^2 Sin[θ0]^4 dfwf^2)/r0^2]); (* beobachtete Inklination *) ink0:=б/. Solve[Z'[0]/ю[0] Cos[б]==-Y'[0]/ю[0] Sin[б]&&б>0&&б<2π&&б<δp[r0, a], б][[1]]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 7) DIFFERENTIALGLEICHUNG |||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) dp= Style[\!\(\*SuperscriptBox[\(Y\),\(Y\)]\), White]; n0[z_] := Chop[Re[N[Simplify[z]]]]; initcon = NSolve[ dr0 == pr0 δ/Ξ && dθ0 == pθ0/Ξ && dφ0 == 1/(δ Ξ Sin[θ0]^2) (ε (-δ Xj+a Sin[θ0]^2 (r0^2+a^2))+Lz (δ-a^2 Sin[θ0]^2)- q ℧ r0 a Sin[θ0]^2) && -μ == -(((r0^2+a^2 Cos[θ0]^2) dr0^2)/(a^2-2 r0+r0^2+℧^2))+((a^2-2 r0+ r0^2+℧^2-a^2 Sin[θ0]^2) (dt0)^2)/(r0^2+a^2 Cos[θ0]^2)+(-r0^2- a^2 Cos[θ0]^2) dθ0^2+(2 a (2 r0-℧^2) Sin[θ0]^2 dt0 dφ0)/(r0^2+ a^2 Cos[θ0]^2)+((-(a^2+r0^2)^2 Sin[θ0]^2+a^2 (a^2-2 r0+r0^2+ ℧^2) Sin[θ0]^4) dφ0^2)/(r0^2+a^2 Cos[θ0]^2) && dt0 > 0, {dθ0, dr0, dt0, dφ0}, Reals]; initkon = NSolve[ dr0 == pr0 δ/Ξ && dθ0 == pθ0/Ξ && dφ0 == 1/(δ Ξ Sin[θ0]^2) (ε (-δ Xj+a Sin[θ0]^2 (r0^2+a^2))+Lz (δ-a^2 Sin[θ0]^2)- q ℧ r0 a Sin[θ0]^2) && dt0 == ς0/Sqrt[1-μ^2 v0^2] && dt0 > 0, {dθ0, dr0, dt0, dφ0}, Reals]; DG1={ t''[τ]==-(((r'[τ] ((a^2+r[τ]^2) (a^2 Cos[θ[τ]]^2 (q ℧-2 t'[τ])+r[τ] (-q ℧ r[τ]+ 2 (-℧^2+r[τ]) t'[τ]))+a (2 a^4 Cos[θ[τ]]^2+a^2 ℧^2 (3+Cos[2 θ[τ]]) r[τ]- a^2 (3+Cos[2 θ[τ]]) r[τ]^2+4 ℧^2 r[τ]^3-6 r[τ]^4) Sin[θ[τ]]^2 φ'[τ]))/(a^2+℧^2+(-2+ r[τ]) r[τ])+a^2 θ'[τ] (Sin[2 θ[τ]] (q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ])-2 a Cos[θ[τ]] (℧^2- 2 r[τ]) Sin[θ[τ]]^3 φ'[τ]))/(a^2 Cos[θ[τ]]^2+r[τ]^2)^2), t'[0]==If[μ==0, dt0/.initcon[[1]], ς0/Sqrt[1-v0^2]], t[0]==0, r''[τ]==((-1+r[τ])/(a^2+℧^2+(-2+r[τ]) r[τ])-r[τ]/(a^2 Cos[θ[τ]]^2+r[τ]^2)) r'[τ]^2+ (a^2 Sin[2 θ[τ]] r'[τ] θ'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)+(1/(8 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3))(a^2+℧^2+(-2+r[τ]) r[τ]) (8 t'[τ] (a^2 Cos[θ[τ]]^2 (-q ℧+t'[τ])+ r[τ] (q ℧ r[τ]+(℧^2-r[τ]) t'[τ]))+8 r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 θ'[τ]^2+ 8 a Sin[θ[τ]]^2 (a^2 Cos[θ[τ]]^2 (q ℧-2 t'[τ])+r[τ] (-q ℧ r[τ]+2 (-℧^2+r[τ]) t'[τ])) φ'[τ]+ Sin[θ[τ]]^2 (r[τ] (a^2 (3 a^2+4 ℧^2+4 (a-℧) (a+℧) Cos[2 θ[τ]]+a^2 Cos[4 θ[τ]])+ 8 r[τ] (2 a^2 Cos[θ[τ]]^2 r[τ]+r[τ]^3-a^2 Sin[θ[τ]]^2))+2 a^4 Sin[2 θ[τ]]^2) φ'[τ]^2), r'[0]==dr0/.initcon[[1]], r[0]==r0, θ''[τ]==-((a^2 Cos[θ[τ]] Sin[θ[τ]] r'[τ]^2)/((a^2+℧^2+(-2+r[τ]) r[τ]) (a^2 Cos[θ[τ]]^2+ r[τ]^2)))-(2 r[τ] r'[τ] θ'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)+(1/(16 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3))Sin[2 θ[τ]] (a^2 (-8 t'[τ] (2 q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ])+8 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^2 θ'[τ]^2)+16 a (a^2+r[τ]^2) (q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ]) φ'[τ]+(3 a^6-5 a^4 ℧^2+ 10 a^4 r[τ]+11 a^4 r[τ]^2-8 a^2 ℧^2 r[τ]^2+16 a^2 r[τ]^3+16 a^2 r[τ]^4+8 r[τ]^6+ a^4 Cos[4 θ[τ]] (a^2+℧^2+(-2+r[τ]) r[τ])+4 a^2 Cos[2 θ[τ]] (a^2+℧^2+(-2+ r[τ]) r[τ]) (a^2+2 r[τ]^2)) φ'[τ]^2), θ'[0]==dθ0/.initcon[[1]], θ[0]==θ0, φ''[τ]==-(1/(4 (a^2 Cos[θ[τ]]^2+r[τ]^2)^2))((r'[τ] (4 a q ℧ (a^2 Cos[θ[τ]]^2-r[τ]^2)- 8 a (a^2 Cos[θ[τ]]^2+(℧^2-r[τ]) r[τ]) t'[τ]+(a^2 (3 a^2+8 ℧^2+a^2 (4 Cos[2 θ[τ]]+ Cos[4 θ[τ]])) r[τ]-4 a^2 (3+Cos[2 θ[τ]]) r[τ]^2+8 (a^2+℧^2+a^2 Cos[2 θ[τ]]) r[τ]^3- 16 r[τ]^4+8 r[τ]^5+2 a^4 Sin[2 θ[τ]]^2) φ'[τ]))/(a^2+℧^2+(-2+r[τ]) r[τ])+ θ'[τ] (8 a Cot[θ[τ]] (q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ])+(8 Cot[θ[τ]] (a^2+r[τ]^2)^2- 2 a^2 (3 a^2+2 ℧^2+4 (-1+r[τ]) r[τ]) Sin[2 θ[τ]]-a^4 Sin[4 θ[τ]]) φ'[τ])), φ'[0]==dφ0/.initcon[[1]], φ[0]==φ0, str'[τ]==If[μ==0, 1, vd[τ]/Abs[Sqrt[1-vd[τ]^2]]], str[0]==0, vlt'[τ]==If[μ==0, 1, vd[τ]], vlt[0]==0 }; DG2={ t'[τ]==1/(Δ Σ Sin[θ[τ]]^2) (Lz (Δ XJ-a Sin[θ[τ]]^2 (r[τ]^2+a^2))+ε (-Δ XJ^2+ Sin[θ[τ]]^2 (r[τ]^2+a^2)^2)-q ℧ r[τ] Sin[θ[τ]]^2 (r[τ]^2+a^2)), t[0]==0, r''[τ]==((-1+r[τ])/(a^2+℧^2+(-2+r[τ]) r[τ])-r[τ]/(a^2 Cos[θ[τ]]^2+r[τ]^2)) r'[τ]^2+ (a^2 Sin[2 θ[τ]] r'[τ] θ'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)+(1/(8 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3))(a^2+℧^2+(-2+r[τ]) r[τ]) (8 t'[τ] (a^2 Cos[θ[τ]]^2 (-q ℧+t'[τ])+ r[τ] (q ℧ r[τ]+(℧^2-r[τ]) t'[τ]))+8 r[τ] (a^2 Cos[θ[τ]]^2+r[τ]^2)^2 θ'[τ]^2+ 8 a Sin[θ[τ]]^2 (a^2 Cos[θ[τ]]^2 (q ℧-2 t'[τ])+r[τ] (-q ℧ r[τ]+2 (-℧^2+r[τ]) t'[τ])) φ'[τ]+ Sin[θ[τ]]^2 (r[τ] (a^2 (3 a^2+4 ℧^2+4 (a-℧) (a+℧) Cos[2 θ[τ]]+a^2 Cos[4 θ[τ]])+ 8 r[τ] (2 a^2 Cos[θ[τ]]^2 r[τ]+r[τ]^3-a^2 Sin[θ[τ]]^2))+2 a^4 Sin[2 θ[τ]]^2) φ'[τ]^2), r'[0]==(pr0 δ)/Ξ, r[0]==r0, θ''[τ]==-((a^2 Cos[θ[τ]] Sin[θ[τ]] r'[τ]^2)/((a^2+℧^2+(-2+r[τ]) r[τ]) (a^2 Cos[θ[τ]]^2+ r[τ]^2)))-(2 r[τ] r'[τ] θ'[τ])/(a^2 Cos[θ[τ]]^2+r[τ]^2)+(1/(16 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^3))Sin[2 θ[τ]] (a^2 (-8 t'[τ] (2 q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ])+8 (a^2 Cos[θ[τ]]^2+ r[τ]^2)^2 θ'[τ]^2)+16 a (a^2+r[τ]^2) (q ℧ r[τ]+(℧^2-2 r[τ]) t'[τ]) φ'[τ]+(3 a^6-5 a^4 ℧^2+ 10 a^4 r[τ]+11 a^4 r[τ]^2-8 a^2 ℧^2 r[τ]^2+16 a^2 r[τ]^3+16 a^2 r[τ]^4+8 r[τ]^6+ a^4 Cos[4 θ[τ]] (a^2+℧^2+(-2+r[τ]) r[τ])+4 a^2 Cos[2 θ[τ]] (a^2+℧^2+(-2+ r[τ]) r[τ]) (a^2+2 r[τ]^2)) φ'[τ]^2), θ'[0]==pθ0/Ξ, θ[0]==θ0, φ'[τ]==1/(Δ Σ Sin[θ[τ]]^2) (ε (-Δ XJ+a Sin[θ[τ]]^2 (r[τ]^2+a^2))+Lz (Δ-a^2 Sin[θ[τ]]^2)- q ℧ r[τ] a Sin[θ[τ]]^2), φ[0]==φ0, str'[τ]==If[μ==0, 1, vd[τ]/Abs[Sqrt[1-vd[τ]^2]]], str[0]==0, vlt'[τ]==If[μ==0, 1, vd[τ]], vlt[0]==0 }; DG3={ t'[τ]==1/(Δ Σ Sin[θ[τ]]^2) (Lz (Δ XJ-a Sin[θ[τ]]^2 (r[τ]^2+a^2))+ε (-Δ XJ^2+ Sin[θ[τ]]^2 (r[τ]^2+a^2)^2)-q ℧ r[τ] Sin[θ[τ]]^2 (r[τ]^2+a^2)), t[0]==0, r'[τ]==Sign[vr0] Sqrt[Vτ]/Σ, r[0]==r0, θ'[τ]==Sign[vθ0] Sqrt[Q-Cos[θ[τ]]^2 (a^2 (μ^2-ε^2)+Lz^2/Sin[θ[τ]]^2)]/Σ, θ[0]==θ0, φ'[τ]==1/(Δ Σ Sin[θ[τ]]^2) (ε (-Δ XJ+a Sin[θ[τ]]^2 (r[τ]^2+a^2))+Lz (Δ-a^2 Sin[θ[τ]]^2)- q ℧ r[τ] a Sin[θ[τ]]^2), φ[0]==φ0, str'[τ]==If[μ==0, 1, vd[τ]/Abs[Sqrt[1-vd[τ]^2]]], str[0]==0, vlt'[τ]==If[μ==0, 1, vd[τ]], vlt[0]==0 }; DG4={ t''[τ]==((-4 a^2 r[τ] Sin[2 θ[τ]] t'[τ] θ'[τ]+r'[τ] (4 a^2 Sin[θ[τ]]^2 t'[τ]+ r[τ]^3 (q ℧-2 t'[τ]+6 a Sin[θ[τ]]^2 φ'[τ])))/((-2+r[τ]) r[τ]^4+4 a^2 r[τ] Sin[θ[τ]]^2)), t'[0]==dtwf, t[0]==0, r''[τ]==((r'[τ]^2-t'[τ]^2+t'[τ] (q ℧+2 a Sin[θ[τ]]^2 φ'[τ])+r[τ]^3 (θ'[τ]^2+ Sin[θ[τ]]^2 φ'[τ]^2))/(r[τ] (2+r[τ]))), r'[0]==drwf, r[0]==r0, θ''[τ]==((-2 r[τ]^2 r'[τ] θ'[τ]+Cos[θ[τ]] Sin[θ[τ]] φ'[τ] (-4 a t'[τ]+ r[τ]^3 φ'[τ]))/(r[τ]^3)), θ'[0]==duwf, θ[0]==θ0, φ''[τ]==-((2 (r'[τ] (-a q ℧+a r[τ] t'[τ]+((-2+r[τ]) r[τ]^3-2 a^2 Sin[θ[τ]]^2) φ'[τ])+ r[τ] θ'[τ] (-2 a Cot[θ[τ]] (-2+r[τ]) t'[τ]+(Cot[θ[τ]] (-2+r[τ]) r[τ]^3+ 2 a^2 Sin[2 θ[τ]]) φ'[τ])))/((-2+r[τ]) r[τ]^4+4 a^2 r[τ] Sin[θ[τ]]^2)), φ'[0]==dfwf, φ[0]==φ0, str'[τ]==vd[τ], str[0]==0, vlt'[τ]==vd[τ], vlt[0]==0 }; DG5={ t''[τ]==0, t'[0]==1, t[0]==0, r''[τ]==-(1-℧ q)/r[τ]^2+(Sqrt[vφ0^2+vθ0^2] r0)^2/r[τ]^3, r'[0]==vr0, r[0]==r0, θ''[τ]==-2 θ'[τ] r'[τ]/r[τ]+Sin[θ[τ]] Cos[θ[τ]] φ'[τ]^2, θ'[0]==vθ0/r0, θ[0]==θ0, φ''[τ]==-2 φ'[τ] (r'[τ]+r[τ] θ'[τ] Cot[θ[τ]])/r[τ], φ'[0]==vφ0/r0 Csc[θ0], φ[0]==φ0, vlt'[τ]==Sqrt[r'[τ]^2+φ'[τ]^2 r[τ]^2], vlt[0]==0, str'[τ]==Sqrt[r'[τ]^2+φ'[τ]^2 r[τ]^2], str[0]==0 }; DGL = If[dgl==1, DG1, If[dgl==2, DG2, If[dgl==3, DG3, If[dgl==4, DG4, DG5]]]]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 8) INTEGRATION |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) sol=NDSolve[DGL, {t, r, θ, φ, vlt, str}, {τ, 0, tmax+1/1000}, WorkingPrecision-> wp, MaxSteps-> Infinity, Method-> mta, InterpolationOrder-> All, StepMonitor :> (laststep=plunge; plunge=τ; stepsize=plunge-laststep;), Method->{"EventLocator", "Event" :> (If[stepsize<1*^-4, 0, 1])}]; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 9) KOORDINATEN |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) X[τ_]:=Evaluate[Sqrt[r[τ]^2+a^2] Sin[θ[τ]] Cos[φ[τ]]/.sol][[1]]; (* kartesisch *) Y[τ_]:=Evaluate[Sqrt[r[τ]^2+a^2] Sin[θ[τ]] Sin[φ[τ]]/.sol][[1]]; Z[τ_]:=Evaluate[r[τ] Cos[θ[τ]]/.sol][[1]]; x[τ_]:=Evaluate[Sqrt[r[τ]^2+A^2] Sin[θ[τ]] Cos[φ[τ]]/.sol][[1]]; (* Plotkoordinaten *) y[τ_]:=Evaluate[Sqrt[r[τ]^2+A^2] Sin[θ[τ]] Sin[φ[τ]]/.sol][[1]]; z[τ_]:=Z[τ]; XYZ[τ_]:=Sqrt[X[τ]^2+Y[τ]^2+Z[τ]^2]; XY[τ_]:=Sqrt[X[τ]^2+Y[τ]^2]; (* kartesischer Radius *) Xyz[{x_, y_, z_}, α_]:={x Cos[α]-y Sin[α], x Sin[α]+y Cos[α], z}; (* Rotationsmatrix *) xYz[{x_, y_, z_}, β_]:={x Cos[β]+z Sin[β], y, z Cos[β]-x Sin[β]}; xyZ[{x_, y_, z_}, ψ_]:={x, y Cos[ψ]-z Sin[ψ], y Sin[ψ]+z Cos[ψ]}; (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 10) PLOT EINSTELLUNGEN |||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) PR=r1; (* Plot Range *) VP={r0, r0, r0}; (* Perspektive x,y,z *) d1=10; (* Schweiflänge *) plp=50; (* Flächenplot Details *) Plp=Automatic; (* Kurven Details *) w1l=0; w2l=0; w1r=0; w2r=0; (* Startperspektiven *) Mrec=100; mrec=10; (* Parametric Plot Subdivisionen *) imgsize=380; (* Bildgröße *) s[text_]:=Style[text, FontFamily->"Consolas", FontSize->11]; (* Anzeigestil *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 11) PLOT NACH EIGENZEIT ||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) Plot[R[tt], {tt, 0, plunge}, Frame->True, PlotStyle->Red, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, All}, GridLines->{{}, {rA, rI}}, PlotLabel -> "r(τ)"] Plot[Mod[180/Pi Θ[tt], 360], {tt, 0, plunge}, Frame->True, PlotStyle->Cyan, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "θ(τ)"] Plot[Mod[180/Pi Φ[tt], 360], {tt, 0, plunge}, Frame->True, PlotStyle->Magenta, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "φ(τ)"] Plot[v[tt], {tt, 0, plunge}, Frame->True, PlotStyle->Orange, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, plunge}, All}, GridLines->{{}, {0, 1}}, PlotLabel -> "v(τ)"] displayP[T_]:=Grid[{ {If[μ==0, s[" affineP"], s[" τ propr"]], " = ", s[n0[tp]], s["GM/c³"], s[dp]}, {s[" t coord"], " = ", s[n0[т[tp]]], s["GM/c³"], s[dp]}, {s[" ṫ total"], " = ", s[n0[ю[tp]]], s["dt/dτ"], s[dp]}, {s[" ς gravt"], " = ", s[n0[If[dgl==5, 1, ς[tp]]]], s["dt/dτ"], s[dp]}, {s[" γ kinet"], " = ", If[μ==0, s[n0[ς[tp]]], s[n0[If[dgl==5, vnt[tp]^2/2, 1/Sqrt[1-v[tp]^2]]]]], s["dt/dτ"], s[dp]}, {s[" R carts"], " = ", s[n0[XYZ[tp]]], s["GM/c²"], s[dp]}, {s[" x carts"], " = ", s[n0[X[tp]]], s["GM/c²"], s[dp]}, {s[" y carts"], " = ", s[n0[Y[tp]]], s["GM/c²"], s[dp]}, {s[" z carts"], " = ", s[n0[Z[tp]]], s["GM/c²"], s[dp]}, {s[" s dstnc"], " = ", s[n0[dst[tp]]], s["GM/c²"], s[dp]}, {s[" r coord"], " = ", s[n0[R[tp]]], s["GM/c²"], s[dp]}, {s[" φ longd"], " = ", s[n0[Φ[tp] 180/π]], s["deg"], s[dp]}, {s[" θ lattd"], " = ", s[n0[Θ[tp] 180/π]], s["deg"], s[dp]}, {s[" d¹r/dτ¹"], " = ", s[n0[R'[tp]]], s["c"], s[dp]}, {s[" d¹φ/dτ¹"], " = ", s[n0[Φ'[tp]]], s["c\.b3/G/M"], s[dp]}, {s[" d¹θ/dτ¹"], " = ", s[n0[Θ'[tp]]], s["c\.b3/G/M"], s[dp]}, {s[" d\.b2r/dτ\.b2"], " = ", s[n0[R''[tp]]], s["c⁴/G/M"], s[dp]}, {s[" d\.b2φ/dτ\.b2"], " = ", s[n0[Φ''[tp]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" d\.b2θ/dτ\.b2"], " = ", s[n0[Θ''[tp]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" a SpinP"], " = ", s[n0[a]], s["GM²/c"], s[dp]}, {s[" ℧ cntrl"], " = ", s[n0[℧]], s["Q/M"], s[dp]}, {s[" q prtcl"], " = ", s[n0[q]], s["q/m"], s[dp]}, {s[" M irred"], " = ", s[N[mirr]], s["M"], s[dp]}, {s[" E kinet"], " = ", s[n0[If[dgl==5, vnt[tp]^2/2, ekin[tp]]]], s["mc²"], s[dp]}, {s[" E poten"], " = ", s[n0[If[dgl==5, -(1-℧ q)/R[tp], epot[tp]]]], s["mc²"], s[dp]}, {s[" E total"], " = ", s[n0[If[dgl==5, v0^2/2-(1-℧ q)/r0+1, ε]]], s["mc²"], s[dp]}, {s[" CarterQ"], " = ", s[n0[Qk]], s["GMm/c"], s[dp]}, {s[" L axial"], " = ", s[n0[If[dgl==5, vφ0 r0, Lz]]], s["GMm/c"], s[dp]}, {s[" L polar"], " = ", s[n0[If[dgl==5, vθ0 r0, pΘ[tp]]]], s["GMm/c"], s[dp]}, {s[" α dv/dτ"], " = ", s[n0[v'[tp]]], s["c⁴/G/M"], s[dp]}, {s[" ω fdrag"], " = ", s[n0[Abs[ω[tp]]]], s["c³/G/M"], s[dp]}, {s[" v fdrag"], " = ", s[n0[Abs[й[tp]]]], s["c"], s[dp]}, {s[" Ω fdrag"], " = ", s[n0[Abs[Ω[tp]]]], s["c"], s[dp]}, {s[" v propr"], " = ", s[n0[If[dgl==5, vnt[tp], v[tp]/Sqrt[1-v[tp]^2]]]], s["c"], s[dp]}, {s[" v escpe"], " = ", s[n0[vesc[tp]]], s["c"], s[dp]}, {s[" v obsvd"], " = ", s[n0[ß[tp]]], s["c"], s[dp]}, {s[" v r,loc"], " = ", s[n0[If[dgl==5, R'[tp], vr[tp]]]], s["c"], s[dp]}, {s[" v θ,loc"], " = ", s[n0[If[dgl==5, Θ'[tp] R[tp], vθ[tp]]]], s["c"], s[dp]}, {s[" v φ,loc"], " = ", s[n0[If[dgl==5, Φ'[tp] R[tp]/Csc[Θ[tp]], vφ[tp]]]], s["c"], s[dp]}, {s[" v local"], " = ", s[n0[If[dgl==5, vnt[tp], v[tp]]]], s["c"], s[dp]}, {s[" "], s[" "], s[" "], s[" "]}}, Alignment-> Left, Spacings-> {0, 0}]; plot1b[{xx_, yy_, zz_, tk_, w1_, w2_}]:= (* Animation *) Show[ Graphics3D[{ {PointSize[0.011], Red, Point[ Xyz[xyZ[{x[tp], y[tp], z[tp]}, w1], w2]]}}, ImageSize-> imgsize, PlotRange-> { {-(2 Sign[Abs[xx]]+1) PR, +(2 Sign[Abs[xx]]+1) PR}, {-(2 Sign[Abs[yy]]+1) PR, +(2 Sign[Abs[yy]]+1) PR}, {-(2 Sign[Abs[zz]]+1) PR, +(2 Sign[Abs[zz]]+1) PR} }, SphericalRegion->False, ImagePadding-> 1], horizons[A, None, w1, w2], If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[prm] a, Cos[prm] a, 0}, w1], w2], {prm, 0, 2π}, PlotStyle -> {Thickness[0.005], Orange}]], If[a==0, {}, Graphics3D[{{PointSize[0.009], Purple, Point[ Xyz[xyZ[{ Sin[-φ0-ω0 т[tp]+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 т[tp]+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2]]}}]], If[tk==0, {}, If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[-φ0-ω0 т[tt]+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 т[tt]+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2], {tt, Max[0, д[т[tp]-1/2 π/ω0]], tp}, PlotStyle -> {Thickness[0.001], Dashed, Purple}, PlotPoints-> Automatic, MaxRecursion-> 12]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, If[tp<0, Min[0, tp+d1], Max[0, tp-d1]], tp}, PlotStyle-> {Thickness[0.004]}, ColorFunction-> Function[{x, y, z, t}, Hue[0, 1, 0.5, If[tp<0, Max[Min[(+tp+(-t+d1))/d1, 1], 0], Max[Min[(-tp+(t+d1))/d1, 1], 0]]]], ColorFunctionScaling-> False, PlotPoints-> Automatic, MaxRecursion-> mrec]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, 0, If[tp<0, Min[-1*^-16, tp+d1/3], Max[1*^-16, tp-d1/3]]}, PlotStyle-> {Thickness[0.004], Opacity[0.6], Darker[Gray]}, PlotPoints-> Plp, MaxRecursion-> mrec]]], ViewPoint-> {xx, yy, zz}]; Do[ Print[Rasterize[Grid[{{ plot1b[{0, -Infinity, 0, tp, w1l, w2l}], plot1b[{0, 0, +Infinity, tp, w1r, w2r}], displayP[tp] }, {" ", " ", " "} }, Alignment->Left]]], {tp, 0, tMax, tMax/1}] (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 12) PLOT NACH KOORDINATENZEIT ||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) Plot[R[д[tt]], {tt, 0, TMax}, Frame->True, PlotStyle->Red, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, All}, GridLines->{{}, {rA, rI}}, PlotLabel -> "r(t)"] Plot[Mod[180/Pi Θ[д[tt]], 360], {tt, 0, TMax}, Frame->True, PlotStyle->Cyan, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "θ(t)"] Plot[Mod[180/Pi Φ[д[tt]], 360], {tt, 0, TMax}, Frame->True, PlotStyle->Magenta, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, {0, 360}}, GridLines->{{}, {90, 180, 270}}, PlotLabel -> "φ(t)"] Plot[v[д[tt]], {tt, 0, TMax}, Frame->True, PlotStyle->Orange, AspectRatio->1/5, ImagePadding->{{40, 10}, {20, 10}}, ImageSize->600, PlotRange->{{0, TMax}, All}, GridLines->{{}, {0, 1}}, PlotLabel -> "v(t)"] displayC[T_]:=Grid[{ {s[" t coord"], " = ", s[n0[tk]], s["GM/c³"], s[dp]}, {If[μ==0, s[" affineP"], s[" τ propr"]], " = ", s[n0[T]], s["GM/c³"], s[dp]}, {s[" ṫ total"], " = ", s[n0[ю[T]]], s["dt/dτ"], s[dp]}, {s[" ς gravt"], " = ", s[n0[If[dgl==5, 1, ς[T]]]], s["dt/dτ"], s[dp]}, {s[" γ kinet"], " = ", If[μ==0, s[n0[ς[T]]], s[n0[If[dgl==5, vnt[T]^2/2, 1/Sqrt[1-v[T]^2]]]]], s["dt/dτ"], s[dp]}, {s[" R carts"], " = ", s[n0[XYZ[T]]], s["GM/c²"], s[dp]}, {s[" x carts"], " = ", s[n0[X[T]]], s["GM/c²"], s[dp]}, {s[" y carts"], " = ", s[n0[Y[T]]], s["GM/c²"], s[dp]}, {s[" z carts"], " = ", s[n0[Z[T]]], s["GM/c²"], s[dp]}, {s[" s dstnc"], " = ", s[n0[dst[T]]], s["GM/c²"], s[dp]}, {s[" r coord"], " = ", s[n0[R[T]]], s["GM/c²"], s[dp]}, {s[" φ longd"], " = ", s[n0[Φ[T] 180/π]], s["deg"], s[dp]}, {s[" θ lattd"], " = ", s[n0[Θ[T] 180/π]], s["deg"], s[dp]}, {s[" d¹r/dτ¹"], " = ", s[n0[R'[T]]], s["c"], s[dp]}, {s[" d¹φ/dτ¹"], " = ", s[n0[Φ'[T]]], s["c\.b3/G/M"], s[dp]}, {s[" d¹θ/dτ¹"], " = ", s[n0[Θ'[T]]], s["c\.b3/G/M"], s[dp]}, {s[" d\.b2r/dτ\.b2"], " = ", s[n0[R''[T]]], s["c⁴/G/M"], s[dp]}, {s[" d\.b2φ/dτ\.b2"], " = ", s[n0[Φ''[T]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" d\.b2θ/dτ\.b2"], " = ", s[n0[Θ''[T]]], s["c⁶/G\.b2/M\.b2"], s[dp]}, {s[" a SpinP"], " = ", s[n0[a]], s["GM²/c"], s[dp]}, {s[" ℧ cntrl"], " = ", s[n0[℧]], s["Q/M"], s[dp]}, {s[" q prtcl"], " = ", s[n0[q]], s["q/m"], s[dp]}, {s[" M irred"], " = ", s[N[mirr]], s["M"], s[dp]}, {s[" E kinet"], " = ", s[n0[If[dgl==5, vnt[T]^2/2, ekin[T]]]], s["mc²"], s[dp]}, {s[" E poten"], " = ", s[n0[If[dgl==5, -(1-℧ q)/R[T], epot[T]]]], s["mc²"], s[dp]}, {s[" E total"], " = ", s[n0[If[dgl==5, v0^2/2-(1-℧ q)/r0+1, ε]]], s["mc²"], s[dp]}, {s[" CarterQ"], " = ", s[n0[Qk]], s["GMm/c"], s[dp]}, {s[" L axial"], " = ", s[n0[If[dgl==5, vφ0 r0, Lz]]], s["GMm/c"], s[dp]}, {s[" L polar"], " = ", s[n0[If[dgl==5, vθ0 r0, pΘ[T]]]], s["GMm/c"], s[dp]}, {s[" α dv/dτ"], " = ", s[n0[v'[T]]], s["c⁴/G/M"], s[dp]}, {s[" ω fdrag"], " = ", s[n0[Abs[ω[T]]]], s["c³/G/M"], s[dp]}, {s[" v fdrag"], " = ", s[n0[Abs[й[T]]]], s["c"], s[dp]}, {s[" Ω fdrag"], " = ", s[n0[Abs[Ω[T]]]], s["c"], s[dp]}, {s[" v propr"], " = ", s[n0[If[dgl==5, vnt[T], v[T]/Sqrt[1-v[T]^2]]]], s["c"], s[dp]}, {s[" v escpe"], " = ", s[n0[vesc[T]]], s["c"], s[dp]}, {s[" v obsvd"], " = ", s[n0[ß[T]]], s["c"], s[dp]}, {s[" v r,loc"], " = ", s[n0[If[dgl==5, R'[T], vr[T]]]], s["c"], s[dp]}, {s[" v θ,loc"], " = ", s[n0[If[dgl==5, Θ'[T] R[T], vθ[T]]]], s["c"], s[dp]}, {s[" v φ,loc"], " = ", s[n0[If[dgl==5, Φ'[T] R[T]/Csc[Θ[T]], vφ[T]]]], s["c"], s[dp]}, {s[" v local"], " = ", s[n0[If[dgl==5, vnt[T], v[T]]]], s["c"], s[dp]}, {s[" "], s[" "], s[" "], s[" "]}}, Alignment-> Left, Spacings-> {0, 0}]; plot1a[{xx_, yy_, zz_, tk_, w1_, w2_}]:= (* Animation *) Show[ Graphics3D[{ {PointSize[0.011], Red, Point[ Xyz[xyZ[{x[T], y[T], z[T]}, w1], w2]]}}, ImageSize-> imgsize, PlotRange-> { {-(2 Sign[Abs[xx]]+1) PR, +(2 Sign[Abs[xx]]+1) PR}, {-(2 Sign[Abs[yy]]+1) PR, +(2 Sign[Abs[yy]]+1) PR}, {-(2 Sign[Abs[zz]]+1) PR, +(2 Sign[Abs[zz]]+1) PR} }, SphericalRegion->False, ImagePadding-> 1], horizons[A, None, w1, w2], If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[prm] a, Cos[prm] a, 0}, w1], w2], {prm, 0, 2π}, PlotStyle -> {Thickness[0.005], Orange}]], If[a==0, {}, Graphics3D[{{PointSize[0.009], Purple, Point[ Xyz[xyZ[{ Sin[-φ0-ω0 tk+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 tk+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2]]}}]], If[tk==0, {}, If[a==0, {}, ParametricPlot3D[ Xyz[xyZ[{ Sin[-φ0-ω0 tt+π/2] Sqrt[x0[A]^2+y0[A]^2], Cos[-φ0-ω0 tt+π/2] Sqrt[x0[A]^2+y0[A]^2], z0[A]}, w1], w2], {tt, Max[0, tk-1/2 π/ω0], tk}, PlotStyle -> {Thickness[0.001], Dashed, Purple}, PlotPoints-> Automatic, MaxRecursion-> mrec]]], Block[{$RecursionLimit = Mrec}, If[tk==0, {}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, If[TMax<0, Min[0, T+d1], Max[0, T-d1]], T}, PlotStyle-> {Thickness[0.004]}, ColorFunction-> Function[{x, y, z, t}, Hue[0, 1, 0.5, If[TMax<0, Max[Min[(+T+(-t+d1))/d1, 1], 0], Max[Min[(-T+(t+d1))/d1, 1], 0]]]], ColorFunctionScaling-> False, PlotPoints-> Automatic, MaxRecursion-> mrec]]], If[tk==0, {}, Block[{$RecursionLimit = Mrec}, ParametricPlot3D[ Xyz[xyZ[{x[tt], y[tt], z[tt]}, w1], w2], {tt, 0, If[Tmax<0, Min[-1*^-16, T+d1/3], Max[1*^-16, T-d1/3]]}, PlotStyle-> {Thickness[0.004], Opacity[0.6], Darker[Gray]}, PlotPoints-> Plp, MaxRecursion-> mrec]]], ViewPoint-> {xx, yy, zz}]; Quiet[Do[ Print[Rasterize[Grid[{{ plot1a[{0, -Infinity, 0, tk, w1l, w2l}], plot1a[{0, 0, Infinity, tk, w1r, w2r}], displayC[Quiet[д[tk]]] }, {" ", " ", " "} }, Alignment->Left]]], {tk, 0, TMax, TMax/1}]] (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||| 13) EXPORTOPTIONEN |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* Export als HTML Dokument *) (* Export["Y:\\export\\dateiname.html", EvaluationNotebook[], "GraphicsOutput" -> "PNG"] *) (* Export direkt als Bildsequenz *) (* Do[Export["Y:\\export\\dateiname" <> ToString[tk] <> ".png", Rasterize[...] *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *) (* |||||||||||| http://kerr.newman.yukerez.net ||||| Simon Tyran, Vienna |||||||||||||||| *) (* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)