race <- rbinom (10000, 1, 0.5) income <- rnorm (10000, 20000, 10000)*(race+1) wealth <- rnorm (10000, 20000, 10000)*(race+1) income <-scale(income) wealth <- scale (wealth) crime <- rnorm(10000, 0, 1) - income - wealth data<-as.data.frame(cbind(race, income, wealth, crime)) colnames(data)<-c("race", "income", "wealth", "crime") library(dplyr) data$incomeTier <- case_when((data$income < -1) ~ 1, (data$income < 0) & (data$income > -1) ~ 2, (data$income < 1) & (data$income > 0) ~ 3, (data$income < 2) & (data$income > 1) ~ 4, (data$income > 1) ~ 5 ) data$wealthTier <- case_when((data$wealth < -1) ~ 1, (data$wealth < 0) & (data$wealth > -1) ~ 2, (data$wealth < 1) & (data$wealth > 0) ~ 3, (data$wealth < 2) & (data$wealth > 1) ~ 4, (data$wealth > 1) ~ 5 ) dataWhites<- data[ which(data$race==1), ] dataBlacks<- data[ which(data$race==0), ] aggregate(dataWhites$crime, by=list(dataWhites$incomeTier), FUN=mean)[2] aggregate(dataBlacks$crime, by=list(dataBlacks$incomeTier), FUN=mean)[2]