for word_tags in word_tags_list: bag_of_words = [] pattern_words = word_tags[0] for word in pattern_words: index=pattern_words.index(word) word=stemmer.stem(word.lower()) pattern_words[index]=word for word in stem_words: if word in pattern_words: bag_of_words.append(1) else: bag_of_words.append(0) print(bag_of_words) labels_encoding = list(labels) #inicialmente, labels será toda zerada tag = word_tags[1] #salve a tag tag_index = classes.index(tag) #vá para o índice da tag labels_encoding[tag_index] = 1 #anexe 1 àquele índice training_data.append([bag_of_words, labels_encoding]) print(training_data[0]) # Crie os dados de treinamento def preprocess_train_data(training_data): training_data = np.array(training_data, dtype=object) train_x = list(training_data[:,0]) train_y = list(training_data[:,1]) print(train_x[0]) print(train_y[0]) return train_x, train_y train_x, train_y = preprocess_train_data(training_data)